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Abstract In this paper we present a new preconditioner
suitable for solving linear systems arising from finite ele-
ment approximations of elliptic PDEs with high-contrast
coefficients. The construction of the preconditioner con-
sists of two phases. The first phase is an algebraic one
which partitions the degrees of freedom into “high” and
“low” permeability regions which may be of arbitrary ge-
ometry. This partition yields a corresponding blocking of
the stiffness matrix and hence a formula for the action of
its inverse involving the inverses of both the high permeabil-
ity block and its Schur complement in the original matrix.
The structure of the required sub-block inverses in the high
contrast case is revealed by a singular perturbation analysis
(with the contrast playing the role of a large parameter).
This shows that for high enough contrast each of the sub-
block inverses can be approximated well by solving only
systems with constant coefficients. The second phase of
the algorithm involves the approximation of these constant
coefficient systems using multigrid methods. The result is
a general method of algebraic character which (under suit-
able hypotheses) can be proved to be robust with respect
to both the contrast and the mesh size. While a similar per-
formance is also achieved in practice by algebraic multigrid
(AMG) methods, this performance is still without theoret-
ical justification. Since the first phase of our method is
comparable to the process of identifying weak and strong
connections in conventional algebraic multigrid algorithms,
our theory provides to some extent a theoretical justification
for these successful algebraic procedures. We demonstrate
the advantageous properties of our preconditioner using ex-
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periments on model problems. Our numerical experiments
show that for sufficiently high contrast the performance of
our new preconditioner is almost identical to that of the
Ruge and Stüben AMG preconditioner, both in terms of
iteration count and CPU-time.
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1 Introduction

Problems with high-contrast coefficients are ubiquitous in
porous media flow applications; e.g., [20,25,24]. Conse-
quently, development of efficient solvers for high-contrast
heterogeneous media has been an active area of research,
specifically in the setting of multiscale solvers [2,10,11,22].
In this paper, we are particularly concerned with the conver-
gence of a family of algebraic preconditioners that exploit
the binary character of high-contrast coefficients related to
those recently proposed by Aksoylu and Klie [3].

We consider preconditioners for piecewise linear finite
element discretisations of boundary-value problems for the
model elliptic problem

−∇ · (α∇u) = f , (1)

in a bounded polygonal or polyhedral domain Ω ⊂ Rd,
d = 2 or 3 with suitable boundary conditions on the bound-
ary ∂Ω. The coefficient α(x) may vary over many orders of
magnitude in an unstructured way on Ω. Many examples of
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this kind arise in groundwater flow and oil reservoir simu-
lation; see for example the comprehensive overviews [1,17,
7,15]. For the theoretical statements in this paper, we will
assume for convenience that α in (1) is a scalar function.
However all the same results hold when α(x) is replaced by
a symmetric positive definite matrix A(x), with spectrum
lying in the range [C−1α(x) , Cα(x)] where C is moderate
in size, and where the scalar function α(x) has the prop-
erties which we assume below. The case when C is very
large (the anisotropic case) presents additional difficulties
and should be the subject of future analysis.

Let T h be a conforming shape-regular simplicial mesh
on Ω and let Vh denote the space of continuous piece-
wise linear finite elements on T h which vanish on essential
boundaries. The finite element discretisation of (1) in this
space yields the linear system:

Au = f , (2)

and it is well-known that the conditioning of A worsens
when T h is refined or when the heterogeneity (characterised
by the range of α) becomes large. It is of interest to find
solvers for (2) which are robust to the heterogeneity as well
as to the mesh width h.

In the literature there are many papers devoted to the
efficient solution of this problem and provide a rigorous
justification when discontinuities in α are simple interfaces
which can be resolved by a coarse mesh (see e.g. [4,13] and
the references therein for papers on domain decomposition
methods and [26] for results on multigrid methods).

Even if suitable coefficient-resolving coarse meshes are
not available, good performance of Krylov-based methods
can still be achieved by standard preconditioners when there
is a small number of unresolved interfaces. This is because
the preconditioning produces a highly clustered spectrum
with correspondingly few near-zero eigenvalues [9,10,23].

For more general complicated heterogeneous high-con-
trast media, recent progress was made in [11] where a char-
acterisation of domain decomposition methods which are
robust with respect to both contrast and mesh parame-
ters was presented. This analysis indicated explicitly how
subdomains and coarse spaces should be designed in order
to achieve robustness also with respect to extreme hetero-
geneities, even inside coarse mesh elements. This approach
was further extended in [22] to give a justification of the
robustness of smoothed aggregation type domain decom-
position methods for problems of this type.

At the same time it is well-known that algebraic multi-
grid procedures also produce optimal robust solvers for such
heterogeneous problems, but so far theoretical justification
of this is lacking. In this paper we describe a precondi-
tioner which involves both an algebraic phase (similar to
that used in algebraic multigrid) coupled with an applica-
tion of standard multigrid ([12]) and we prove its robustness
and demonstrate this on a sequence of model problems.

The preconditioner which we shall describe is an en-
hancement of an original method proposed in [14] for solv-
ing pressure-saturation coupled systems and recently ap-

plied in [3] for the setting of highly heterogeneous media.
In [3], the coupling in the pressure system was interpreted as
the interaction of degrees of freedom with different physical
properties (as explained later). Moreover, when the under-
lying physics is not fully captured algebraically by the block
partitioning – especially in the case of complex geometry –
a deflation strategy was employed to enhance the precon-
ditioner.

To give some more details, the first algebraic phase of
our family of preconditioners involves partitioning of the
degrees of freedom (subsequently referred to as “DOFs”)
into a set corresponding to a “high-permeability” region and
a “low-permeability” region. DOFs that lie on the interface
between the two regions are (always) included in the high-
permeability region. Note that in the context of standard FE
matrices and, for high enough contrast, this can easily be
obtained by examining the diagonal entries of the matrix A,
or by using a strong-connection criterion similar to that used
in algebraic multigrid algorithms. Thus any vector u ∈ Rn
can be decomposed into u = (uT

H ,u
T
L )T and the stiffness

matrix A in (2) can be partitioned

A =
[
AHH AHL

ALH ALL

]
. (3)

After a little algebra, the exact inverse of A can be written:

A−1 =
[
IHH −A−1

HHAHL

0 ILL

][
A−1

HH 0
0 S−1

][
IHH 0

−ALHA
−1
HH ILL

]
(4)

where S = ALL −ALHA
−1
HHAHL is the Schur complement of

AHH in A and IHH and ILL denote the identity matrices of
the appropriate dimension.

A singular perturbation analysis can now be devised to
explain the properties of the subblocks in (4). Arguments
of this type were first used in the context of condition num-
ber analysis for additive Schwarz methods in [9,10]. More
recently this approach was refined to treat the more com-
plicated problem of analysing multigrid preconditioners in
[26]. Here we use the singular perturbation-type analysis in
a different context.

Suppose for simplicity that ΩH has coefficient α = α̂�
1 and that ΩL := int(Ω\ΩH ) has coefficient α = 1. (Note
however, that our method and our analysis are not restricted
to this piecewise constant model situation.) It is clear that

α̂−1AHH = NHH +O(α̂−1) , as α̂→∞ , (5)

where NHH is the matrix corresponding to the pure Neu-
mann problem for the Laplace operator on ΩH . This shows
that (after scaling by α̂−1), AHH can be preconditioned ro-
bustly and efficiently by standard multilevel methods, such
as geometric multigrid, with a performance independent of
h and α̂. The possible benefits of using multigrid as a pre-
conditioner for the congugate gradient method are well-
known and were pointed out, for example, by W. Hackbusch
in [12].
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Moreover the analysis of AHH as α̂→∞ has important
implications for the behaviour of S. In §2, 3 we show that
in this case

S = S(∞) +O(α̂−1) , (6)

where S(∞) is a low rank perturbation of ALL. The rank of
the perturbation depends on the number of disconnected
components in ΩH . This special limiting form of S allows
us to build a robust approximation of S−1, for example
combining solves with ALL (again available robustly using
standard multilevel methods) with the Sherman-Morrison-
Woodbury formula.

There are a number of further approximations of (4)
which can be envisaged. In fact, the simplest version of the
Aksoylu-Klie preconditioner [3] is

BAK0 =
[
A−1

HH 0
0 ILL

][
IHH 0

−ALHA
−1
HH ILL

]
. (7)

As we show in §2, this preconditioner will perform reason-
ably provided the number of DOFs in ΩL is not significantly
large. To obtain better behaviour with respect to the num-
ber of DOFs in ΩL a suitable modification to the Aksoylu-
Klie preconditioner would be

BAK1 =
[
A−1

HH 0
0 S−1

][
IHH 0

−ALHA
−1
HH ILL

]
. (8)

As a simple consequence of (4) we have σ(BAK1A) = {1}.
However, a practical application of this preconditioner re-
quires again robust and efficient approximations of A−1

HH and
S−1, and so BAK1 is in fact nothing else but a nonsymmetric
version of the preconditioner which we shall present below.
We will only focus on the symmetric version in this paper.

The paper is structured as follows. In the next section we
explain the basic idea for a simple model problem of a two
scale medium with a simply connected high permeability
region inside the domain. This leads to a suggested precon-
ditioner which we show robust as α̂→∞. In §3 we extend
the perturbation analysis to several high permeability re-
gions and more general coefficients. In §4 we compare the
performance of the proposed preconditioners numerically on
some model problems. We also include performance com-
parisons with geometric and algebraic multigrid methods.

2 The one island case

2.1 Singular perturbation analysis

Let Ω be decomposed with respect to permeability value as

Ω = ΩH ∪ΩL, (9)

where ΩH and ΩL denote the high and low permeability
regions respectively. Note that this is available algebraically,
either via inspection of the diagonal entries in A or using
the very common notion from AMG of strong and weak

ΩL

ΩH

Fig. 1 Ω = ΩH ∪ ΩL where ΩH and ΩL are high and low per-
meable regions, respectively.

connections in A. Let Γ be the interface between ΩH and
ΩL; Γ = ΩH ∩ΩL.

We shall describe the basic idea by assuming first of all
that ΩH is connected and ΩH ∩ ∂Ω = ∅, and that pure
Dirichlet boundary conditions are enforced on all of ∂Ω.
(See Figure 1.) Moreover let α|ΩH = α̂� 1 and α|ΩL = 1.
We will come back to the more general situation in the next
section.

From the decomposition (9), we obtain a blocking for
A as in (3) where only the block AHH = AHH (α̂) depends
on α̂ and the Schur complement is

S(α̂) := ALL −ALHAHH (α̂)−1AHL . (10)

To analyse the α̂-robustness of preconditioners based
on (4), we need to analyse the asymptotic behaviour of the
block components AHH (α̂)−1, S(α̂)−1 and ALHAHH (α̂)−1

as α̂ → ∞. This is the purpose of Lemma 1 below. To
prepare for this, we further decompose the set of DOFs
associated with ΩH into a set of interior DOFs associated
with index I and boundary DOFs with index Γ . This leads
to the following further block representation of

AHH (α̂) =
[
AII (α̂) AIΓ (α̂)
AΓ I (α̂) AΓΓ (α̂)

]
. (11)

The entries in the block AΓΓ (α̂) are assembled from con-
tributions both from finite elements in ΩH and ΩL, i.e.
AΓΓ (α̂) = A(H)

ΓΓ (α̂) + A(L)
ΓΓ and so, inserting this into (11),

we obtain

AHH (α̂) = α̂NHH +∆ , where ∆ =
[

0 0
0 A(L)

ΓΓ

]
, (12)

and where NHH is the Neumann matrix on ΩH , as described
in (5). This is a symmetric positive semidefinite matrix with
a simple zero eigenvalue and associated constant eigenvec-
tor. If nH denotes the number of degrees of freedom in ΩH ,
a suitable normalised eigenvector is the constant vector with

entries n
−1/2
H , which we denote by eH . We further write in

block form as eH = (eT

I , e
T
Γ )T .
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Finally we note that the off-diagonal blocks in (3) (which
are independent of α̂) have the decomposition:

ALH =
[

0 ALΓ

]
= AT

HL . (13)

The following result describes the asymptotic behaviour
of the sub-blocks in (4).

Lemma 1 Let η := eT
ΓA

(L)
ΓΓeΓ = eT

H∆eH . Then

(i) AHH (α̂)−1 = eHη
−1eT

H +O(α̂−1)
(ii) S(α̂) = ALL − (ALΓeΓ ) η−1 (eT

ΓAΓL) +O(α̂−1)
(iii) ALHAHH (α̂)−1 = (ALΓeΓ )η−1eT

H +O(α̂−1)

Proof Since NHH is symmetric positive semidefinite we
have the eigenvalue decomposition:

ZTNHHZ = diag(λ1, λ2, . . . , λnH−1, 0), (14)

where {λi : i = 1, . . . , nH} is a non-increasing sequence
of eigenvalues of NHH and Z is orthogonal. Because the
eigenvector corresponding to the zero eigenvalue is con-
stant, we may write Z =

[
Z̃ | eH

]
and so, using (12), we

have

ZTAHHZ =
[
α̂ diag(λ1, . . . , λnH−1) + Z̃T∆Z̃ Z̃T∆eH

eT
H∆Z̃ eT

H∆eH

]
=:
[
Λ̃(α̂) δ̃

δ̃
T

η

]
, (15)

where η > 0 (independent of α̂), since η = eT
HAHH (α̂)eH

and AHH (α̂) as a diagonal subblock of A(α̂) is SPD. To
find the limiting form of AHH (α̂)−1 note that

Λ̃(α̂) = α̂ diag(λ1, . . . , λnH−1) + Z̃T∆Z̃

= α̂ diag(λ1, . . . , λnH−1) ∗(
I + α̂−1 diag(λ−1

1 , . . . , λ−1
nH−1)Z̃T∆Z̃

)
.

and so, for sufficiently large α̂, we have:

‖Λ̃(α̂)−1‖2 ≤
α̂−1 maxi<nH

λ−1
i

1− α̂−1 maxi<nH
λ−1
i ‖Z̃T∆Z̃‖2

→ 0

as α̂→∞. Hence we may write, for α̂ sufficiently large,[
Λ̃(α̂) δ̃

δ̃
T

η

]−1

=
[
I −Λ̃(α̂)−1δ̃
0T 1

]
Y (α̂)

[
I 0

−δ̃
T

Λ̃(α̂)−1 1

]

with Y (α̂) :=

[
Λ̃(α̂)−1 0

0T

(
η − δ̃

T

Λ̃(α̂)−1δ̃
)−1

]
. (16)

which implies[
Λ̃(α̂) δ̃

δ̃
T

η

]−1

=
[
O 0
0T η−1

]
+O(α̂−1) , (17)

and, by (15), we have

AHH (α̂)−1 = Z

[
O 0
0T η−1

]
ZT +O(α̂−1)

= eH (eT

ΓA
(L)
ΓΓeΓ )−1 eT

H +O(α̂−1) , (18)

which proves part (i) of the Lemma.
Parts (ii) and (iii) follow from simple substitution,

using (10) and (13). ut

To understand this lemma a bit better, we define the lim-
iting forms:

AHH (∞)−1 := eH (eT

ΓA
(L)
ΓΓeΓ )−1 eT

H ,

S(∞) := ALL −ALHAHH (∞)−1AHL

= ALL − (ALΓeΓ ) (eT

ΓA
(L)
ΓΓeΓ )−1 (eT

ΓAΓL) ,

PLH (∞) := ALHAHH (∞)−1

= (ALΓeΓ ) (eT

ΓA
(L)
ΓΓeΓ )−1 eT

H .

Note that S(∞) can also be interpreted as the Schur com-
plement of c2 eT

ΓA
(L)
ΓΓeΓ in the matrix

A∞LL =
[
c2 eT

ΓA
(L)
ΓΓeΓ c eT

ΓAΓL

c ALΓeΓ ALL

]
,

for any nonzero value of c. In particular, if we choose c :=
n

1/2
H , then ceΓ = 1Γ , the vector of all ones on Γ and, using

also (12), we have

A∞LL :=
[
1T
ΓA

(L)
ΓΓ1Γ 1T

ΓAΓL

ALΓ1Γ ALL

]
=
[
1T

HAHH (1)1H 1T
HAHL

ALH1H ALL

]
.

(19)

This is the stiffness matrix for a pure Dirichlet problem for
the Laplacian on all of Ω with the additional constraint that
the solution is constant on ΩH . See Figure 2.

h
constu  = 

Ω

ΩH

L

Fig. 2 The matrix in (19) corresponds to a homogeneous Dirich-
let problem for the Laplacian on Ω under the constraint that the
solution is constant on ΩH .

Thus, when α̂ � 1, the original problem decouples al-
most entirely into a (regularised) Neumann problem (i.e.
AHH (α̂)) for the Laplacian on ΩH (scaled by α̂) and a
Dirichlet problem (i.e. A∞LL) for the Laplacian on all of
Ω, but under the additional constraint that the solution
is constant on ΩH . The coupling of the two problems (i.e.
ALHAHH (α̂)−1) reduces to a transfer of the average of the
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solution over ΩH to ΩL. Efficient and robust multilevel pre-
conditioners exist (with theory) for the two subproblems
and we will exploit exactly this fact to construct precondi-
tioners that we can prove are robust with respect to mesh
size and coefficient variations. We shall now explain this in
the context of the model problem considered in this section.

2.2 A suitable preconditioner

Based on the above perturbation analysis we propose the
following preconditioner:

B(α̂) := (20)[
IHH −PLH (∞)T

0 ILL

][
AHH (α̂) 0

0 S(∞)

]−1[
IHH 0

−PLH (∞) ILL

]
.

The following theorem shows that B is an effective precon-
ditioner for α̂� 1.

Theorem 1 For α̂ sufficiently large we have

σ(B(α̂)A(α̂)) ⊂ [1− cα̂−1/2, 1 + cα̂−1/2]

for some constant c independent of α̂, and therefore

κ(B(α̂)A(α̂)) = 1 +O(α̂−1/2).

Remark 1 It is possible to carry out a more detailed per-
turbation analysis of AHH (α̂)−1 and S(α̂), and to quan-
tify the constant c in the above theorem. It turns out that
c ≤ κeff(NHH )1/2, where κeff(NHH ) = λmax(NHH )/λ2(NHH )
is the effective condition number of NHH ,. In the case of a
quasi-uniform mesh κeff(NHH )1/2 = O(h−1) = O(n1/2

H ),
where nH is the number of nodes in ΩH . Therefore pro-
vided α̂ � nH , the preconditioned matrix B(α̂)A(α̂) is
well conditioned, i.e. κ(B(α̂)A(α̂)) = 1 +O((nH/α̂)1/2).
The proof of this requires substantial further analysis.
Details will be given in the forthcoming work [21].

Proof Letting M1/2 denote the square root of any sym-
metric positive definite matrix M , we write B = LTL
with

L :=

 A
−1/2
HH 0

−S(∞)−1/2PLH (∞) S(∞)−1/2

 .

(Note that for notational convenience we do not explic-
itly state which terms depend on α̂ everywhere in this
proof.) A straightforward calculation shows that

σ(BA) = σ(LALT) = σ(I +R) , (21)

with

R :=
[

0 RHL

RT
HL 0

]
and

RHL := A
−1/2
HH (AHL −AHHP

T

LH (∞))S(∞)−1/2 .

As an example of the computation leading to (21), note
that the bottom right-hand entry of the product LALT

reads:

S(∞)−1/2[ PLH (∞)AHHPLH (∞)T − PLH (∞)AHL −
ALHPLH (∞)T +ALL]S(∞)−1/2 = I ,

since, by definition of PLH (∞) and of η, we have

−ALHPLH (∞)T +ALL = S(∞)

and

PLH (∞)AHHPLH (∞)T − PLH (∞)AHL =
ALH

(
eHη

−1eT

HAHHeHη
−1eT

H − eHη
−1eT

H

)
AHL = 0 .

To finish the proof we shall show that, for α̂ suffi-
ciently large,

A
−1/2
HH = eHη

−1/2eT

H +O(α̂−1/2). (22)

On the assumption that (22) holds, we have

RLH = S(∞)−1/2ALH (IHH − eHη
−1eT

HAHH )eHη
−1/2eT

H +

+O(α̂−1/2) = O(α̂−1/2) (23)

and so the spectral radius ρ(R) of R is O(α̂−1/2), which
together with (21) completes the proof.

To prove (22), let us write down the eigenvalue de-
composition of AHH (α̂)

Q(α̂)TAHH (α̂)Q(α̂) = diag(µ1(α̂), . . . , µnH
(α̂)) (24)

where {µi(α̂) : i = 1, . . . , nH} denotes any non-increasing
ordering of the eigenvalues of AHH (α̂). Since AHH (α̂) is
SPD (see the discussion following (15)), we have µi(α̂) >
0 for all i ≤ nH . Moreover, the µi are continuous func-
tions of α̂, with

α̂−1µi(α̂) = λi +O(α̂−1), (25)

as α̂ → ∞, where the λi are as defined in the proof
of Lemma 1 and we have used (15). However, we also
know from (18) that (for α̂ sufficiently large) the largest
eigenvalue of AHH (α̂)−1 is given by

µnH
(α̂)−1 = η−1 +O(α̂−1) . (26)

Therefore, using (24), (25) and (26), we have

Q(α̂)TAHH (α̂)−1/2Q(α̂) =

diag(0, . . . , 0, η−1/2) +O(α̂−1/2) .

The required estimate (22) follows by noting that the last
column of Q(α̂) approaches eH with O(α̂−1) as α̂→∞.

ut
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Remark 2 Applying the original Aksoylu-Klie precondi-
tioner BAK0 ([3]) defined in (7) to A(α̂) we get

BAK0A(α̂) =
[
IHH AHH (α̂)−1AHL

0 S(α̂)

]
.

Thus as shown in [3],

σ(BAK0A) = {1} ∪ σ(S(α̂)).

We see from Lemma 1 that, as α̂ → ∞, S(α̂) converges
to a rank 1 perturbation of ALL. By standard theory for
such perturbations (e.g. [8, Theorem 8.1.5]), for large α̂
and small h, the condition number of S(α̂) will be close
to the condition number of ALL, which grows with h−2

(assuming the area of the domain ΩL is of fixed size).
Therefore BAK0 will lose robustness as h → 0 (even if
α̂� h2).

To illustrate the sharpness of the estimates in Theorem
1, we computed the eigenvalues of B−1A for the geometry
illustrated in Figure 3. This was done by exact computa-
tion of the blocks in B, and so is restricted to moderate
numbers of degrees of freedom. The domain Ω is a unit
square and the dark interior square is a high-permeability
region (denoted ΩH ) which is placed at the centre of Ω,
and has side length ρ. (See Figure 3.) Then ΩL = Ω\ΩH .
The unit square is covered with a uniform triangular mesh
with mesh diameter h, which resolves the boundary of ΩH .
Dirichlet conditions are applied on the boundary of Ω and
nH is the number of degrees of freedom in ΩH . We study
results for two different choices of ρ, namely ρ = 1/2 fixed
and ρ = 4h, decreasing as the mesh is refined. In the ta-
bles, β denotes the quantity κeff(NHH )1/2α̂−1/2 which is
an upper bound for the quantity cα̂−1/2 in Theorem 1, so
that Theorem 1 predicts that the spectrum of B−1A is
bracketed in the interval [1−β, 1 +β]. We also display the
exact smallest and largest eigenvalues of B−1A which are
denoted λ1 and λn respectively.

ρ

ρ

Fig. 3 The unit square domain Ω and the high permeability
region ΩH , which is a square of side length ρ centred at the
centre of Ω.

From Table 1 we see first of all that the spectrum of
B−1A lies within the interval [1 − β, 1 + β], as predicted.

Observing that λ1 and λn are symmetrically located with
respect to 1 let us look more carefully at the behaviour of
λn. Reading across the rows in Table 1, we see that λn− 1
decreases very clearly with O(α̂−1/2). Reading down the
columns we see that λn − 1 increases with a rate bounded

by O(n1/2
H ), which is what is predicted by Theorem 1 and

Remark 1.
Table 2 illustrates the case when ρ = 4h, so that the

number of degrees of freedom nH remains fixed at 25 as
h→ 0. Reading down the columns we see that for fixed α̂,
β remains fixed as h decreases and λ1 and λn remain within
fixed distances from 1. Again reading across the rows we
see that the distance of λ1 and λn from 1 decreases clearly
with O(α̂−1/2).

2.3 Practical implementation of the preconditioner

The preconditioner B(α̂) still involves inverses of the blocks
AHH (α̂) and S(∞). Factorising these will be prohibitively
large in realistic applications. However, as discussed above,
in the limit as α̂ → ∞ both these blocks contain no more
coefficient variation and can be efficiently preconditioned
via multilevel preconditioners (with theoretical foundation).

Recall first that α̂−1AHH (α̂) = NHH +α̂−1∆ where NHH

is the Neumann problem for the Laplacian on ΩH . There-
fore AHH (α̂) can be efficiently preconditioned via a standard
multigrid V-cycle BHH (with either geometric or algebraic
coarsening strategy). This preconditioner is (justifiably) h-
robust on the subspace orthogonal to eH , and there exists
a well-documented theory explaining this (see e.g. [12] for
geometric multigrid and [18] for algebraic multigrid).

Similarly we can build robust preconditioners for S(∞)
via standard multigrid methods. Recall that S(∞) = ALL−
vη−1vT where v := ALHeH , η := eT

HAHHeH , and ALL is the
Dirichlet problem for the Laplacian on ΩL. If BLL denotes
a standard multigrid V-cycle for ALL, we can construct an
efficient and robust preconditioner S̃−1 for S(∞) using the
Sherman-Morrison formula, i.e.

S̃−1 := BLL + BLLv(1− η)−1vTBLL.

Again it follows from standard multigrid theory that this
preconditioner is h-robust. Note also that in practice we
can precompute and store BLLv during the setup phase.
This means we only need to apply the multigrid V-cycle
BLL once per iteration.

Alternatively, we can also obtain an efficient precondi-
tioner for S(∞) by constructing a standard multigrid V-
cycle for A∞LL . In this way one can avoid the application
of the Sherman-Morrison formula (which may become pro-
hibitively expensive in the case of multiple islands). How-
ever, a proof of the h-robustness of this approach can not
be directly deduced from existing literature. In the numer-
ical results in §4 we have used this approach. However, in
the following (in a slight abuse of notation) we will refer to

this preconditioner also by S̃−1.
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α̂ = 102 α̂ = 104 α̂ = 106

h−1 nH 1− β λ1 λn 1− β λ1 λn 1− β λ1 λn

8 25 0.511 0.869 1.311 0.951 0.987 1.013 0.995 0.9987 1.0013
16 81 0.146 0.789 1.211 0.915 0.978 1.022 0.991 0.9978 1.0022
32 289 0.842 0.967 1.033 0.984 0.9967 1.0033
64 1089 0.698 0.953 1.047 0.970 0.9953 1.0047

Table 1 Case 1, i.e. ρ = 1/2

α̂ = 102 α̂ = 104 α̂ = 106

h−1 nH 1− β λ1 λn 1− β λ1 λn 1− β λ1 λn

8 25 0.5111 0.8687 1.1313 0.9511 0.9866 1.0134 0.9511 0.9987 1.0013
16 25 0.5111 0.8382 1.1618 0.9511 0.9834 1.0166 0.9951 0.9983 1.0017
32 25 0.9511 0.9829 1.0171 0.9951 0.9983 1.0017
64 25 0.9511 0.9828 1.0171 0.9951 0.9983 1.0017

Table 2 Case 2, i.e. ρ = 4h

Therefore, the final (practical) preconditioner which we
propose and use is

B̃ :=
[
IHH −PLH (∞)T

0 ILL

][
BHH 0

0 S̃−1

][
IHH 0

−PLH (∞) ILL

]
.

(27)

This preconditioner is robust on the subspace orthogo-
nal to e := [eT

H ,0
T ]T . To deal with the component of the

solution in the direction of e we use deflation techniques,
i.e. we apply our preconditioner within a conjugate gradient
algorithm for the deflated system

PAu⊥ = Pf (28)

where PT is the A-orthogonal projection into the subspace
orthogonal to e, that means

PT = I − eη−1eTA .

and u⊥ := PTu is the projected solution. The component
of the solution u in the direction of e is then simply given
by

u− u⊥ = (I − PT)u = eη−1eT f .

This approach has a significant additional advantage. Work-
ing only on the deflated system (28) (where each CG iter-
ation requires an application of the projections P and PT

to project the right hand side into the range of PA and
to project the current iterate into the subspace orthogo-
nal to e, respectively), we do not require the application of

the block

[
IHH 0

−PLH (∞) ILL

]
and of its transpose. This is a

simple consequence of the fact that

PLH (∞)AHHeHη
−1eT

H = PLH (∞)

and thus[
IHH 0

−PLH (∞) ILL

]
P =[

IHH 0
−PLH (∞) ILL

] [
IHH −AHHeHη

−1eT
H 0

−PLH (∞) ILL

]
= P

This implies that within a CG algorithm for the deflated
system (28) our preconditioner B̃ decouples entirely into
a preconditioner BHH for AHH (α̂) (on the subspace AHH -

orthogonal to eH ) and into a preconditioner S̃−1 for S(α̂).

Remark 3 The fact that for the model problem consid-
ered here deflation against the vector e leads to a huge
improvement in the robustness of the preconditioned con-
jugate gradient method for any preconditioner, has been
observed numerically (e.g. in [16]). The analysis in [16] is
for deflation against exact eigenvectors, or small pertur-
bations of these, while here we provide theory for defla-
tion against the “physical” vector e, which is not a small
perturbation of a true eigenvector.

Remark 4 Note that based on the above perturbation
analysis it is possible to construct simpler precondition-
ers which do not require an approximation of S(∞)−1,
but only an approximation for A−1

LL . It can be shown that
(for α̂ sufficiently large again) these preconditioners lead
to a clustering of the spectrum with a small number (1
or 2) of outliers. The position of these outliers on the real
line is independent of the value of α̂, but it depends on
the shape of the island ΩH . More details will be in [21].

3 More general coefficients and boundary conditions

3.1 Disconnected high permeability regions

In this section we extend the results of the previous section
to the case where the boundary conditions on ∂Ω may be of
mixed type and where ΩH may consist of multiple discon-
nected components. In addition the coefficient function α
is no longer required to be constant on each of the regions
ΩH and ΩL.

Specifically, we suppose that ∂Ω is partitioned into a
Neumann part ΓN and a Dirichlet part ΓD and that the

high-permeability region ΩH may be written as ΩH =
k⋃
i=0

Ωi
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with Ωi ∩ Ωj = ∅, for all i, j = 0, . . . , k, with i 6= j.
Moreover, we assume that, for i = 1, . . . , k, each of the
regions Ωi is itself connected and that Ωi ∩ ΓD = ∅. The
remaining component Ω0 of ΩH consists of the union of
all remaining (disconnected) components of ΩH that touch
the Dirichlet boundary, i.e. for each x ∈ Ω0 there exists a
continuous path in Ω0 to ΓD. Then the low permeability
region is defined to be ΩL := Ω\ΩH . Finally Γ denotes
the portion of the boundary of ΩH which does not coincide
with ∂Ω and Γi = Γ ∩ ∂Ωi.

Note that the stiffness matrix A can be scaled glob-
ally by any fixed parameter, without changing its condition
number, and so we can assume, without loss of generality,

inf
x∈Ω

α(x) = 1 . (29)

Below we perform a singular perturbation analysis analo-
gous to that in §2. The hidden constants in our estimates
will depend on the coefficient variation in each of the high
permeability and low-permeability regions which we encap-
sulate in a single parameter µ, chosen so that

µ−1 ≤ α(x)
α(y)

≤ µ , x, y ∈ Ωi , i = L, 0, . . . , k .

Our asymptotic analysis will be valid on the assumption
that the minimum value of the coefficient on all the Ωi is
large compared to the maximum value on ΩL. Accordingly
we introduce local and global parameters:

α̂i =
infx∈Ωi α(x)
supx∈ΩL

α(x)
and α̂ = min{α̂i : i = 0, . . . , k}

(30)

Note that this reduces to the same definition of α̂ as in
the special case described in §2. Moreover, if α̂→∞ then
α̂i → ∞, for each i = 0, . . . , k. Implicitly our estimates
below will be valid for fixed µ as α̂ → ∞, i.e. under a
kind of “scale separation” assumption. In general there may
be considerable freedom in choosing the interface between
the high- and low-permeability regions. The results below
hold for all choices of boundary so that the scale separation
assumption holds, and therefore for an “optimal” choice of
interface. The optimal choice may not be easily identifiable
in the case of general variable coefficients, but “reasonable”
choices could be computed for example by identifying weak
and strong connections as in AMG.

To simplify this discussion, let us assume for the mo-
ment that k = 2. (The general case is presented in Lemma
2 below. ) Then, since the Ωi are pairwise disjoint, for
i = 0, 1, 2, we have

AHH (α) =

A00(α) 0 0
0 A11(α) 0
0 0 A22(α)

 , (31)

and, generalising (12), we can write

Aii(α) = α̂iNi +∆i . (32)

Here Ni and ∆i also depend on α. In fact Ni is the stiffness
matrix of a Neumann boundary value problem (i = 1, 2),
respectively a mixed boundary value problem (i = 0) on
Ωi, with coefficient function

α̂−1
i α(x) =

(
supx∈ΩL

α(x)
infx∈Ωi α(x)

)
α(x) ,

which, from the assumptions above, can be easily seen to
satisfy

1 ≤ α̂−1
i α(x) ≤ µ2 , x ∈ Ωi , i = 0, 1, 2 .

Moreover, analogously to (12),

∆i =
[

0 0
0 A(L)

Γi,Γi

]
,

where A(L)

Γi,Γi
represents the coupling between nodes on Γi

coming from the low permeability region, in which (by as-
sumptions above), the coefficient varies between 1 and µ.

As in Section 2 we find that, as α̂→∞,

Aii(α)−1 = ei (eT

i∆iei)
−1 eT

i +O(α̂−1) for i = 1, 2 ,
(33)

and, since N0 has trivial nullspace, we have

A00(α)−1 = O(α̂−1) , α̂→∞ . (34)

Thus, if we denote by eH ,i the nH -vector which coincides

with ei on Ωi and is 0 elsewehere, then

AHH (α)−1 =
2∑
i=1

eH ,i (eT

i∆iei)
−1 eT

H ,i +O(α̂−1) (35)

and

S(α) = ALL −
2∑
i=1

(ALHeH ,i) (eT

i∆iei)
−1 (eT

H ,iAHL

)
+ O(α̂−1). (36)

As in Section 2.1 we define

AHH (∞)−1 := lim
α̂→∞

AHH (α)−1 , S(∞) := lim
α̂→∞

S(α) ,

PLH (∞) := lim
α̂→∞

ALHAHH (α)−1 ,

and collect the results in a lemma that generalises Lemma 1.

Lemma 2

AHH (∞)−1 =
k∑
i=1

eH ,i (eT

i∆iei)
−1 eT

H ,i,

S(∞) = ALL −
k∑
i=1

(ALHeH ,i) (eT

i∆iei)
−1 (eT

H ,iAHL

)
,

PLH (∞) =
k∑
i=1

(ALHeH ,i) (eT

i∆iei)
−1 eT

H ,i.
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Thus, in the limit as α̂ → ∞ the Schur complement S(α)
is a simple rank-k update of the block ALL. As in the pre-
vious section S(∞) can again be interpreted as the Schur
complement of the k × k diagonal matrix

E := diag(n1eT

1∆1e1 , . . . , nkeT

k∆kek )

= diag( 1T

H ,1AHH1H ,1 , . . . , 1T

H ,kAHH1H ,k )

in

A∞LL :=
[
E F T

F ALL

]
with F := ALH [1H ,1, . . . ,1H ,k] (37)

and 1H ,i := n
1/2
i eH ,i, i.e. the nH -vector that is 1 on Ωi and

0 elsewhere.
Thus, analogously to the discussion at the end of Sec-

tion 2.1, for large α̂, the problem again essentially decouples
into Neumann or mixed boundary value problems on each of
the Ωi and a Dirichlet problem on Ω\Ω0 with the additional
constraint that the solution is constant on each of the Ωi,
i = 1, . . . , k. Again (and assuming of course that µ is small
compared to α̂), there exist efficient and robust multilevel
preconditioners for each of these decoupled problems.

With this insight, a suitable preconditioner B can be
defined exactly as in (20) and we then have, analogously to
Theorem 1, the following result.

Theorem 2 For α̂ sufficiently large we have

σ(BA) ⊂ [1− cα̂−1/2, 1 + cα̂−1/2]

for some constant c = c(µ, h), which is independent of α̂
and in which the dependence on h is understood. (Details
will be in [21].)

3.2 Multiscale media

Finally, we also consider multiscale media, i.e. high-permea-
bility regions within regions of intermediate strength preme-
ability. We simply apply the above framework recursively.
For simplicity let us consider the following model situa-
tion: as in Section 2, we assume that ΩH is connected and
ΩH ∩ ∂Ω = ∅, but now we assume further that ΩH =
Ω1 ∪Ω2 where Ω1 is again connected and Ω1 ∩ ∂ΩH = ∅,
i.e. an island within an island. We will consider the case
when α2 is high relative to αL and α1 is high relative to α2,
so we define

α̂1 =
(

infx∈Ω1 α(x)
supx∈Ω2

α(x)

)
and α̂2 =

(
infx∈Ω2 α(x)
supx∈ΩL

α(x)

)
,

and assume that α̂ := min{α̂1, α̂2} → ∞, i.e. we have a
three-scale medium with good scale separation. Again as-
sume moderate coefficient variation inside the subdomains,
with µ defined as in Section 3.1.

We can now apply the above framework recursively. Pro-
vided α̂2 is sufficiently large we obtain the limiting form of

the Schur complement S(α) (of AHH in A) as before. How-
ever, there is still strong coefficient variation in the Neu-
mann problem on ΩH and so we need to apply our analysis
again. We write

AHH =
[
A11 A12

A21 A22

]
and find as above that, since α̂1 →∞, this problem again
essentially decouples into a Neumann problem on Ω1 and
a problem on ΩH with the constraint that the solution is
constant on Ω1. This latter problem can again be described
either through the limiting Schur complement of A11 in
AHH , i.e.

S2(∞) := A22 − (A21e1) (eT

1∆1e1)−1 (eT

1A12) ,

or through the (n2 + 1)× (n2 + 1) matrix

A∞22 :=
[
1T

1A1111 1T
1A12

A2111 A22

]
,

and the preconditioner B can be extended accordingly.

4 Numerical Experiments

In this section we apply the congugate gradient (CG) algo-

rithm preconditioned using our preconditioner B̃ defined in
(27) and we compare this with several other possible choices
of preconditioner in the context of several model problems.
In the following tables the notation CG+MG means that
the CG algorithm is preconditioned using one V−cycle of
standard geometric multigrid with SSOR smoother, piece-
wise linear interpolation and full weighting restriction. The
problem on the coarsest grid is solved using the banded
Cholesky solver dpbsv.f in LAPACK. The notation CG+
AMG means that one V−cycle of the Ruge and Stüben
AMG algorithm amg1r5.f [19] is used as preconditioner for

CG. Finally the notation CG + B̃ means that the precon-
ditioner is B̃, which is constructed using the (above) geo-
metric multigrid V−cycle on subblocks of A as described in
§2.3. κ(MG), κ(AMG) and κ(B̃A) are estimates (based
on Ritz values obtained from the CG iteration) of the con-
dition numbers of the respective preconditioned matrices.

The initial guess for the CG algorithm is taken to be
zero and the stopping criterion is taken to be a relative
residual reduction of ε = 10−8 in the Euclidean norm. In all
the experiments below the domain is the unit square and
the relevant elliptic problem is solved subject to a Dirichlet
condition u(x) = 1 − x1 where x = (x1, x2), consistent
with flow from left to right in the domain.

All computations are done using the GNU fortran95
compiler gfortran on a linux intel core 2 laptop with clock-
speed 2GHz, 2Gb of memory and cache size 4Mb.

Example 1 Our first example concerns the geometry in
Figure 3, with ρ = 1/2 where the central island is given a
coefficient α = α̂ and the surrounding region a coefficient
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h−1 CG+MG CG+AMG CG+ B̃ κ(MG) κ(AMG) κ(B̃A)
128 6 (0.11) 7 (0.10) 7 (0.11) 1.19 1.27 1.20
256 6 (0.30) 7 (0.36) 7 (0.40) 1.21 1.29 1.23
512 6 (1.29) 7 (1.48) 7 (1.48) 1.25 1.31 1.24
1024 6 (5.05) 7 (5.81) 7 (5.98) 1.24 1.35 1.26

Table 3 Iteration numbers (cpu times) for the geometry given in Figure 3, with ρ = 1/2 and α̂ = 106 and associated condition
numbers.

α̂ CG+MG CG+AMG CG+ B̃ κ(MG) κ(AMG) κ(B̃A)
102 6 (5.06) 7 (5.83) 23 (17.7) 1.23 1.36 27.9
104 6 (5.04) 7 (5.81) 7 (5.98) 1.23 1.35 1.49
106 6 (5.05) 7 (5.81) 7 (5.98) 1.23 1.35 1.26
108 6 (5.05) 7 (5.81) 7 (5.98) 1.23 1.35 1.26

Table 4 Iteration numbers (cpu times) for the geometry given in Figure 3, with ρ = 1/2 and h−1 = 1024 and associated condition
numbers.

α = 1. Table 3 gives the iteration numbers and (in brackets)
the cpu times for fixed α̂ = 106 as h → 0. Table 4 gives
the iteration numbers and (in brackets) the cpu times for
fixed h−1 = 1024 as α̂→∞.

We observe from these tables that the B̃ preonditioner
performs almost identically to the MG and AMG precon-
ditioners for large enough α̂. In particular all three (as ex-
pected) are h−robust for α̂ fixed. In all three cases the
condition numbers of the preconditioned matrices are very
near to unity. A proof of the robustness of the CG+MG
method is given in [26], under the assumption that the
coarse grid resolves the discontinuous coefficient (which is
the case here). We have given a proof of the robustness

of B̃ under quite general assumption on the shape of the
interface between low-and high permeability regions earlier
in this paper. A proof of the α̂-robustness of the AMG pre-
conditioner is still lacking.

Example 2 The second experiment is for the geometry de-
picted in Figure 4. For this we perform the same experi-
ments as in Example 1. Again the dark shaded regions are
given a coefficient α = α̂ and the remainder a coefficient
α = 1. The results are given in Tables 5 and 6. The results
lead to similar conclusions as in Example 1.

We also remark that preconditioner B̃ does not work so
well as α̂ gets smaller (see Table 6). This is to be expected,
since this method is based on asymptotic expansions as
α̂→∞. However as mentioned earlier our analysis demon-
strates theoretically the success of algebraic methods based
on strong and weak connections in the high contrast case.
Also, of course, standard geometric multigrid works well in
the low-contrast case.

With respect to Examples 1 and 2, we would like to
highlight a point that has already been made many times
in the literature, but so far without theoretical justification.
Using algebraic procedures to identify strong and weak cou-
plings in the stiffness matrix arising from FE discretisations
of high-contrast diffusion problems, it is indeed possible (as
we have proved in this paper) to design multigrid meth-

Fig. 4 The unit square domain Ω and the high permeability
region ΩH , which consists of two squares of side length 1/5
centred at the points (3/10, 3/10) and (7/10, 7/10).

ods that are α̂-robust and have almost the same computa-
tional complexity as geometric multigrid methods for dif-
fusion problems with constant coefficents. In fact, applying
CG+MG to the Laplace problem α̂ = 1 with h−1 = 1280 we
require 6 iterations and 7.72 seconds with our code which
is only slightly faster than the performance of CG+AMG
and CG+B̃ for the high contrast case.

Example 3 As a final example we use the geometry pictured
in Figure 5. This is derived from the Society of Petroleum
Engineers benchmark example SPE10 [5]. We took Layer
59 of this benchmark test and created a binary medium
by imposing a coarse mesh on the medium and identifying
boxes where the permeability was above and below average.
Regions of low permeability are shaded dark in Figure 5 in
this case. In the case of applications in groundwater flow,
to obtain physical flow fields, conservative discretizations
like finite volume or mixed finite elements are usually used.
When mixed finite elements with Raviart-Thomas velocity
elements are applied to the problem (1) it is well-known
that a resulting linear system of saddle-point type results.
However this system can be reduced to a positive-definite
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h−1 CG+MG CG+AMG CG+ B̃ κ(MG) κ(AMG) κ(B̃A)
160 6 (0.14) 7 (0.14) 7 (0.16) 1.20 1.39 1.21
320 6 (0.51) 7 (0.57) 7 (0.61) 1.21 1.38 1.23
640 6 (1.93) 7 (2.26) 7 (2.39) 1.22 1.38 1.24
1280 6 (7.84) 7 (8.88) 7 (9.81) 1.24 1.43 1.25

Table 5 Iteration numbers (cpu times) for the geometry given in Figure 4, with α̂ = 106 and various condition numbers.

α̂ CG+MG CG+AMG CG+ B̃ κ(MG) κ(AMG) κ(B̃A)
102 6 (7.82) 8 (9.54) 19 (22.9) 1.23 1.57 11.8
104 6 (7.85) 7 (8.90) 7 (9.85) 1.24 1.43 1.28
106 6 (7.84) 7 (8.88) 7 (9.81) 1.24 1.43 1.25
108 6 (7.79) 7 (8.87) 7 (9.82) 1.24 1.42 1.25

Table 6 Iteration numbers (cpu times) for the geometry given in Figure 4, with h−1 = 1280 and various condition numbers.

Fig. 5 The geometry of the SPE10-derived problem.

system of form (2) by the employment of a divergence-free
basis ([6]). Moreover this reduced positive definite system
corresponds (in the case of scalar coefficient) to a stan-
dard discretisation of a problem of form (1) with coefficient
α−1. Therefore to make our numerical experiments physi-
cally relevant, we perform them on the geometry depicted
in Figure 5 with the coefficient value α̂ on the dark shaded
areas taken to be large (corresponding to small permeability
in the physical example).

The results are given in Tables 7, 8. Again we observe
comparable performance of the three preconditioners. Be-
cause of the way we have chosen the permeability field in
this case it is easy to create a coarse mesh in geometrical
multigrid which resolves the coefficient discontinuity, and
so geometrical multigrid works well. For more complicated
coefficient fields this would not be the case and in the con-
text of such examples, the comparison between AMG and
B̃ is the more realistic one.

Finally we would like to mention a phenomenon which
we discovered while implementing these examples. That is
that in the case of high contrast media, geometric multigrid
is very sensitive to the choice of solver on the coarseset
grid. In Tables 9,10 below we repeat the experiments of

Tables 7,8 but this time we use 200 iterations of SSOR
for the solution of the problems on the coarsest level in
CG+MG and in CG+B̃ (instead of a direct solver). This
changes the picture for CG+MG rather strongly and it now
no longer appears to be robust. The Ritz values (on the
Krylov subspace generated by the CG iteration) suggest
that the reason for this lack of robustness is related to a
cluster of eigenvalues close to 0 which is not dealt with
properly by the coarse solver. (The largest Ritz value is
∼1.0 in all cases.) This phenomenon is not restricted to the
case of the complicated geometry in Example 3. A similar
behaviour of CG+MG can be observed in the case of 1 or 2
islands in Examples 1 and 2. Since the smallest eigenvalues
are dealt with explicitly in B̃, CG+B̃ does not suffer from
this problem.
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