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Abstract. Eigenvalues of smallest magnitude have known to be a major bottleneck for iterative solvers.
Such eigenvalues become a more dramatic bottleneck when the underlying physical properties have severe
contrasts. These contrasts are commonly found subsurface geological properties such as permeability and
porosity. We intend to construct a method as algebraic as possible. In particular, we propose an algebraic
way of using the underlying permeability field to mark certain degrees of freedom as high permeable when
they exceed a certain threshold. This marking process will define a permutation matrix which allows
us to collect the degrees of freedom that causes the smallest eigenvalues in a subblock. We claim the
responsibility of ill-conditioning to this subblock of the system matrix. The remaining of the matrix will
then be well-conditioned if certain heuristics about the permeability field are satisfied. In our two-stage
preconditioning approach, the first stage comprises the process of collecting small eigenvalues and solving
them separately; the second stage deals with the remaining of the matrix possibly with a deflation strategy
if needed. Numerical examples are shown for one- and two-phase flow scenarios in reservoir simulation
applications. We demonstrate that our two-stage preconditioners are more effective and robust compared
to deflation methods. Due to their algebraic nature, they support flexible and realistic reservoir topology.

Keywords. Preconditioning, two-stage, Schur complement, porous media flow, Krylov subspace, GMRES,
iterative solver, reservoir simulation, deflation preconditioners.

1. Introduction

The main objective of the present work is to introduce a novel physics-based preconditioning strategy for
solving problems with high physical contrasts in porous media applications. These stringent situations
commonly arise, for example, in multilayered geological formations composed of different type of rocks (e.g.,
sandtones, shales, carbonates, limestones). In a multiscale and broader geometrical sense, these formations
are also composed of different minerals and are subject to various types of deformations. In terms of
porous media flow applications, these rock variations are characterized by porosity and permeability values.
Although both properties affect different components of flow equations, we focus the attention on the effects
that the permeability field has in the resulting algebraic system. This is motivated by the fact that the
permeability is generally the main driving factor for the conductance or allowance of fluid to flow through
the porous media. In fact, Darcy’s Law states that permeability values determine the magnitude of fluid
velocities given a change (gradient) of subsurface fluid pressures [21, 37]. There is, in general, a direct
proportionality between permeability and porosity: low permeability zones translates into low porosity zones
causing the fluid to move slowly or even being absent in those regions, and conversely, high-permeability
zones coincides with high-porosity zones, favoring fast fluid flow and the occurrence of regions invaded by
the fluid.

Our algebraic approach is strongly motivated by the permeability distribution and its local contrasts. In
particular, we are assuming that the porous media consist of highly permeable interconnected regions allowing
for a strong global flow conductivity (e.g., channelized media). Figure 1 illustrates this type of permeability
distribution settings that we are interested in handling efficiently from the iterative solution standpoint.
Note that most of the relevant flow physics is governed by the high permeable network structure.

Therefore, we exploit the fact that coefficients associated with distinguishable quasi-homogeneous perme-
ability regions should be grouped in the same block. Thus, we separate the matrix coefficients into high
and low permeability blocks given thus giving rise to a 2× 2 block linear system. The solution of this linear
system is carried out by a Krylov iterative solver using a constrained solution to the high-permeability block
as a one preconditioning stage. Error components that still remain high after this stage can be additionally
smoothed out by the action of a global preconditioning stage. This second stage is generally cheap and is
designed to capture solution components associated with the original coupling and possible roughness within
the low-permeability block. The rationale behind this two-stage preconditioning is that high permeability

1



2 BURAK AKSOYLU, HECTOR KLIE, AND MARY F. WHEELER

block captures major pressure and fluid velocity changes which governs the solution of the overall coupled
system.

Figure 1. A channelized reservoir described in terms of the log permeability field. Stream-
lines indicate preferential flow paths.

Due to the target application considered here and the use of the deflation as a second preconditioning
stage, our work has relevant connections with the pioneering research that Vuik and several of his coauthors
have developed on deflation methods for layered problems with extreme permeability contrasts; see e.g.,
[22, 43, 56, 57, 58]. However, the present work adds a new dimension to their work in the following aspects:
(1) the present framework may accommodate domain-based deflation strategies as proposed by Vuik and
coauthors as well as other preconditioning strategies such as coarse grid correction, domain decomposition
and multigrid; (2) geometry of high- and low-permeability regions may vary arbitrarily in connected region;
(3) comparisons are made with Krylov-based deflation approaches in the setting of porous media for single
and two-phase flow; and, (4) the proposed preconditioner is inspired on previous two-stage preconditioning
work successfully applied for solving coupled linear systems involving different physical variables arising in
fully implicit formulations [11, 18, 31, 52].

The structure of the paper is as follows. Section 2 outlines the physical motivation supporting our approach.
This includes an assessment of the type of domains and the formalization of matrix reorderings we are
interested in constructing. Section 3 focuses in describing the two-stage preconditioning strategy designed
to reflect the physics behind the linear systems. We show connections of these preconditioners with Schur
complement formulations and possible extensions to the proposed methodology. Section 4 presents and
relates Krylov-based and domain-based deflation approaches; including discussion on how to approximate
eigenvectors and construct deflation operators for both approaches. This description has a two-fold blend:
propose efficient ways to compute the second stage of two-stage preconditioners and revisit and compare some
of the Krylov-based deflation operators that have been proposed in the literature. Section 5 numerically
compares the proposed physics-based preconditioning strategy against some well established Krylov-based
deflation methods. We end the paper with conclusions and directions of future work.

2. Formulation of the Problem: Exploiting the Physics

The complexity of fluid flow in a heterogeneous reservoir is one of the major reasons why reservoir simulators
are needed in reservoir engineering studies. The present section provides a brief discussion on the porous
media flow equations, the physical domain under study and its implications in forming the linear system.
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2.1. The Porous Media Flow Model. The basic equations for multiphase flow in porous media consist of
mass conservation equations for different phases (i.e., oil, gas and water in oil reservoir simulation) plus a set
of constitutive (closure) relations that relate pressure and saturations of these phases; a detailed description
of the model can be found in [37]. The mass conservation of each phase i is given by

∂(φρiSi)
∂t

+∇ · (ρiui) = qi, (2.1)

where ρi is the density, φ is the porosity, Si is the saturation, t is time, qi is the well term defined by
production/injection rates at reservoir conditions, and ui is the phase Darcy velocity which is expressed as

ui = −Kkri

µi
(∇Pi − ρig∇Z) ,

where K is the absolute permeability tensor, kri is the relative permeability, µi is the viscosity, Pi is the
pressure, g is the gravity and Z is the depth. The primary unknowns of this model are phase saturations
and phase pressures. In the event of incompressibility (i.e., constant density), the temporal term vanishes.
Additionally, omitting gravity effects we then obtain the following simplified elliptic equation:

∇ · u = −∇ ·
(

K (x)
µ

∇P

)
=

q

φ
. (2.2)

We have intentionally dropped the subindex i and the relative permeability term kr to indicate that this is
a single-phase flow model. We are also emphasizing the fact that K (x) depends on space and can be highly
variant with possible discontinuities, but bounded below by a positive constant (i.e., coercivity condition). To
introduce further notation, we assume that equation (2.2) is defined on a domain Ω with non-flux boundary
conditions, that is,

u · ~n = 0 in ∂Ω. (2.3)

Figure 2. Min eigenvalue, maximum eigenvalue and condition number as a function of
variance and correlation length of exponentially distributed random permeability fields.

Robust simulators need to be able to handle high variations of permeability and porosity (i.e., high hetero-
geneity contrasts). Many of these variations can be encountered in different geological situations that include:
(1) vertical stratification with resultant channeling of fluids in high-permeability zones; (2) low-permeability
material (e.g., shales) that may influence vertical fluid displacement or areal sweep efficiency; (3) discontinu-
ous permeable zones that may affect vertical sweep efficiency; (4) natural fractures or cracks that may reduce
recovery from rock matrix; and, (5) areal permeability variations that prevent flow of injected material. In
any of these situations, solution of linear systems is a challenging task. In fact, linear system solutions
approximately consumes 75%-90% of the overall simulation time regardless of the discretization method.

Figure 2 shows the effect of heterogeneities in the value of extreme eigenvalues and in the resulting condition
number of the linear system associated to equation (2.2). In this example, we consider the log of the
permeability W (x) = lnK (x) following a second-order stationary distribution with a separable exponential
covariance function of the form

CW (x1,x2) = CW (x1,1, x1,2;x2,1, x2,2) = σ2
W exp

[
−1
η
{|x1,1 − x2,1|+ |x1,2 − x2,2|}

]
, (2.4)

where σ2
W is the spatial variability of the log permeability field and η is the correlation length. Several

realizations were generated for different combinations of σ2
W and η. Note that for a constant problem size
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and gridsize, the smaller the correlation length or the greater the spatial variability, the larger the matrix
condition number. Similar trend can be obtained in other stationary and non-stationary distributions such as
those arising in layered or channelized formations where the greater the coefficient jump (spatial variability)
the higher the associated linear system condition number.

Based on the above observations, the absolute permeability K plays a decisive role in the distribution of
saturation, pressure and fluxes on the simulation domain Ω. To simplify the proposed procedure, we assume
that K is a positive scalar function which depends on position and describes highly permeable regions such
as channels either branching or merging across the domain Ω. Additionally, we assume that K is isotropic,
that is, permeability does not vary with direction: (K)ij = Kδij for i, j = 1, 2, 3.

2.2. Ordering Unknowns According to Permeability Contrasts. Since K defines highly conductive
paths, it is convenient to partition Ω in two distinguishable regions. Let Ωh denote the high permeable
region and Ωl denote the low permeable region. We assume that Ωh ∪ Ωl = Ω and Ωh ∩ Ωl = ∅.

The following rationale defines the development of our forthcoming ideas: high-permeability zones should
yield faster changes in the solution and conversely, low-permeability zones should yield almost constant
solutions. Obviously, before putting this in practice we need to formalize what we mean by high- and low-
permeability zones in a layered system. This can be done by defining an average or threshold permeability
value 〈K〉.

Clearly, the computation of 〈K〉 will depend on distribution of permeability scales in Ω. This procedure is
a challenging task by itself and has been subject of intensive research by many authors; see e.g., [46, 51]. A
practical choice for 〈K〉 is the geometric mean, that is,

〈K〉 = exp
{∫

Ω
lnK (x) dx∫

Ω
dx

}
. (2.5)

This definition of 〈K〉 is generally employed to find an effective value for a log-normal permeability distribu-
tion. Nevertheless, we should remark that geometric averaging is generally inaccurate to describe channelized
media but sufficient for the type of cases we will analyze in this work. A more accurate computation of ef-
fective media in channelized media is usually performed via percolative methods [48].

In this way, all grid elements with a permeability value larger than 〈K〉 are numbered first and those with a
value lower are numbered after. This gives rise to a 2×2 block system (for either pressures or concentrations)
of the following form:

Aorig =
[

Aorig
h Aorig

hl

Aorig
lh Aorig

l

]
. (2.6)

Aorig
h and Aorig

l denote the blocks corresponding to high and low permeable regions, respectively, Aorig
hl and

Aorig
lh denote couplings. We have emphasize on the use of the superscript orig to distinguish this system

from the scaled one (to be described in the next section). Correspondingly, the Schur complement of Aorig

is given by Aorig
S = Aorig

l −Aorig
lh Aorig−1

h Aorig
hl .

2.3. Properties and Diagonal Scaling. Given the block form (2.6), we expect to have concentrated the
most relevant solution of the system in block Aorig

h . Some additional comments are in order:

• Given model equation (2.2), the coefficient blocks Aorig
h and Aorig

l are both symmetric positive defi-
nite (SPD) and diagonally dominant. This fact results from considering coercivity/boundedness as-
sumptions and standard discretization procedures. We should stress, however, that in fully-implicit
formulations of multiphase flow these properties do not hold and in most cases, are replaced by
nonsymmetry and M-matrix property assumptions (see e.g., [4, 17, 31]).

• The dimension of Aorig
h and Aorig

l may differ significantly depending on the layered reservoir situation.
Important computational savings may be obtained when |Ωl| � |Ωh|.
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• Each block Aorig
h and Aorig

l may consist of several main diagonal blocks associated with disconnected
high-permeability regions (e.g., layering system where low- and high-permeability layers alternate in
the formation). We should later stress that disconnected regions may not be necessarily included in
the solution process.

• The number of layer blocks in each block Aorig
h and Aorig

l may vary in size and magnitude of its entries
due to the presence of low-scale heterogeneities within each distinguishable permeability zone.

• The blocks Aorig
hl and Aorig

lh tend to have smaller entries as the permeability contrast becomes higher.

Since Aorig is SPD and diagonally dominant there are several implications in the properties associated with
the blocks. First of all, note that these properties are invariant upon row and column permutations. Also,
diagonal scaling creates a clustering effect and the spectral radius of the diagonally scaled matrix becomes
0 < ρ(A) < 2 and difficulties in the solution process may arise when eigenvalues are either lying too close to
the origin or 2.

We invoke some important results associated with the 2× 2 block partitioning given by (2.6) (see [3]):

Theorem 2.1. [On symmetry and positive definiteness]. If Aorig is SPD then each of the following
statements follows:

(1) Aorig
h and Aorig

l are SPD.
(2) Aorig

S is SPD .
(3) κ2(A

orig
S ) ≤ κ2(Aorig).

(4) ‖Aorig
lh Aorig−1

h ‖2
2 ≤ κ2(Aorig).

On the other hand, diagonal scaling brings up other important implications:

Theorem 2.2. [On diagonal scaling]. Let Dorig
l = diag(Aorig

l ) and Dorig
h = diag(Aorig

h ), then the following
statements hold:

(1) S = Dorig−1

l Sorig.
(2) κ2(AS) ≤ κ2(D

orig
l )κ2(A

orig
S ).

(3) AS is similar to the SPD matrix T := Dorig−1/2

l Aorig
S Dorig−1/2

l . Therefore, eigenvalues of AS are all
positive.

Based on the just aforementioned facts, we construct a scaling or Jacobi preconditioner operator D given by

Dorig =
[

diag(Aorig
h ) 0

0 diag(Aorig
l )

]
=:

[
Dorig

h 0
0 Dorig

l

]
(2.7)

and compute the scaled system

A = Dorig−1
Aorig =

[
Dorig−1

h Aorig
h Dorig−1

h Aorig
hl

Dorig−1

l Aorig
lh Dorig−1

l Aorig
l

]
=:

[
Ah Ahl

Alh Al

]
. (2.8)

We observe that diagonal scaling improves the clustering of eigenvalues, therefore, diagonal scaling is always
the initial default preconditioner. In various deflation preconditioner frameworks [57, 59], the initial default
preconditioner is chosen to be ILU(0). The simple diagonal scaling also conforms to our intention of keeping
the preconditioner as simple as possible. We denote the original system matrix by Aorig and the diagonally
scaled matrix by A := Dorig−1

Aorig, where Dorig = diag(Aorig).

3. Physics-Based Preconditioning

3.1. Two-Stage Preconditioning and the Schur Complement. Two stage-preconditioning refers to
the concept of effectively combining the action of two preconditioners into a single one [16]. For instance,
given the right-preconditioned matrix A1 = AM1, we can apply a second preconditioner (either from the
right or left) to A1. The idea can be easily generalized to multi-stage preconditioning by extending the
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recurrence several times. The motivation for combining multiple preconditioning stages obeys to the need of
taking advantage of particular features of the problem within a single preconditioning stage. In a certain way,
multigrid, and domain decomposition methods also fit into this framework. In the arena of porous media flow
applications, two-stage preconditioning has made a name by its own for the solution of fully coupled systems;
see e.g. [18, 31, 53]. Moreover, this preconditioning technology is currently being considered an important
initiative for the development of new generation of reservoir simulators for multiphase and compositional
flow in porous media [11, 23, 38, 55].

The two-stage preconditioner framework that we are interested in developing to be able to exploit the physics
of the problem is the following:

Algorithm 3.1. (Physics-based two-stage preconditioner)

(1) Solve high permeability system: Ahyh = rh, where Ah := RtAR, rh := Rtr.
(2) Obtain expanded solution: y = Ryh.
(3) Compute new residual: r̂ = r −Ay.
(4) Correct the residual: v̂ = r̂ + y.
(5) (If needed) apply a stage two preconditioner Md: v = M−1

d v̂.

The action of the whole preconditioner can be compactly written as

v = M−1
leftr = M−1

d

[
I − (A− I) R

(
RtAR

)−1
Rt

]
r. (3.1)

M−1
d is an appropriate preconditioner of some desired kind such as a deflation preconditioner. In any case,

the preconditioner Md is used to solve those frequencies associated with the coupling to the low-permeability
block Al. This step takes care of the small eigenvalues generated by the permeability contrast existing at
the interface between layers. We note that M is an exact left inverse of A on the subspace spanned by the
columns of R. That is,

(
M−1

leftA
)
R = R.

The inclusion operator under consideration is given as: R =
[

Ih

0

]
. Then,

R
(
RtAR

)−1
Rt =

[
A−1

h 0
0 0

]
.

If we do not use a stage two preconditioner, Md = I, we get

M−1
left =

[
A−1

h 0
−AlhA−1

h Il

]
. (3.2)

Then, M−1
left becomes the exact inverse of

[
Ah 0
Alh Il

]
.

When we further decompose (3.2) as

M−1
left =

[
A−1

h 0
0 Il

] [
Ih 0
−AlhA−1

h Il

]
, (3.3)

we can connect M−1
left to a factorization of A which contains a Schur complement:

A =
[

Ih 0
AlhA−1

h Il

] [
Ah Ahl

0 AS

]
, (3.4)

where AS denotes the Schur complement of Ah in A;

AS = Al −AlhA−1
h Ahl. (3.5)

Now, combining (3.3) and (3.4) we get:

M−1
leftA =

[
Ih A−1

h Ahl

0 AS

]
, (3.6)
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which indicates that
σ(M−1

leftA) = σ(AS) ∪ {1}. (3.7)

If we supplement M−1
left in (3.2) by including the inversion of AS , then a perfect preconditioner can be obtained

which will be defined as M−1
left,opt:

M−1
left,opt =

[
A−1

h 0
0 A−1

S

] [
Ih 0
−AlhA−1

h Il

]
, (3.8)

M−1
left,optA =

[
Ih A−1

h Ahl

0 Il

]
, (3.9)

with σ(M−1
left,optA) = {1}. However this comes with the heavy price of inverting the Schur complement

AS . First of all, AS loses sparsity due to the inversion of Ah. Secondly, when the Schur complement AS

ill-conditioned, inverting it can be quite troublesome.

We conclude that the dependence of the Schur complement is the inherit property of our two-stage precon-
ditioner. The availability of an effective preconditioner of AS in our two-stage preconditioning would be an
ideal scenario. In general, we do not have control on either the conditioning or the sparsity of AS . Hence, we
proposed the heuristic strategy outlined in §2. which utilizes the underlying physical properties and forms a
new permutation of the original system matrix such that the ill-conditioning (namely, eigenvalues of smallest
magnitude) is collected in a small Ah block so that AS is large but well-conditioned so that replacing AS by
Il becomes a viable option as we see when (3.6) and (3.9) are compared.

In a time-dependent and Newton-Krylov setting as a fully-implicit formulation suggests, the computation
of some components of M or Md might be frozen for a sequence of nonlinear iterations and time steps.
Also, since Ah may still have a considerable size the computation of step (1) of the above algorithm may
rely on a iterative method, giving then rise to a nested iterative procedure. It is worth to add, however,
that the solution associated to system Ah may be suitable for a family of efficient porous media solvers on
homogeneous models, such as line correction, ILU, supercoarsening multigrid, domain decomposition and
algebraic multigrid (see e.g., [5, 6, 29, 30, 32, 60, 62]).

Another important aspect is that the formulation of (3.1) may be applied in a nested fashion. That is, we
can repeat the above procedure for the solution of the Ah. This may be useful if the high permeability block
may still have strong permeability contrasts within. This implies to solve a hierarchy of subproblems for
which we calculate 〈K〉i at each level i and apply the deflation Md step as a smoothing step. The procedure
is repeated until the underlying subproblem either resembles a purely homogeneous case or is sufficiently
small to enable the use of a direct or fast iterative solver.

The preconditioner defined above belongs to an extensive family of two-stage preconditioners [11, 18, 31, 52]
for solving fully-coupled systems where each of the variables involved follow different physical behavior
(e.g., pressures and saturations sharing the same discretization block). We have been inspired by this idea to
define the above preconditioner strategy to simultaneously accommodate full high-permeability solutions with
deflated low-permeability solutions. To our knowledge, this is the first time that a two-stage preconditioner
approach has been specifically used to deal with high permeability contrasts.

3.2. Left versus Right Preconditioner. Let us consider the below decompositions of A:

A =
{[

Ih 0
AlhA−1

h Il

] [
Ah 0
0 Il

]} [
Ih 0
0 AS

] [
Ih A−1

h Ahl

0 Il

]
= Mleft

[
Ih A−1

h Ahl

0 AS

]
,

(3.10)

A =
[

Ih 0
AlhA−1

h Il

] [
Ih 0
0 AS

] {[
Ah 0
0 Il

] [
Ih A−1

h Ahl

0 Il

]}
=

[
Ih 0
AlhA−1

h AS

]
Mright.

(3.11)
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We can define a left and right preconditioner from (3.10) and (3.11), respectively:

M−1
left =

[
A−1

h 0
−AlhA−1

h Il

]
, (3.12)

M−1
right =

[
A−1

h −A−1
h Ahl

0 Il

]
. (3.13)

Then,

M−1
leftA =

[
Ih A−1

h Ahl

0 AS

]
, (3.14)

AM−1
right =

[
Ih 0
AlhA−1

h AS

]
. (3.15)

We conclude that the spectra of the preconditioned systems (3.14) and (3.15) are the same:

σ(M−1
leftA) = σ(AM−1

right) = σ(AS) ∪ {1}. (3.16)

The main difference between (3.12) and (3.13) is their action on
[

xh

xl

]
. Equation (3.12) requires only

A−1
h xh, whereas (3.13) requires A−1

h xh and A−1
h (Ahlxl). So, using (3.13) is more costly.

If a stage two preconditioner is introduced, then the preconditioned systems in (3.14) and (3.15) will take
the forms

M−1
d

(
M−1

leftA
)
, (3.17)(

AM−1
right

)
M−1

d . (3.18)

In order to have a spectrally equivalent preconditioned system as in (3.16), the left preconditioner should
be in the immediate left position to A. Similarly, the right preconditioner should be in the immediate right
position to A. In (3.17), M−1

left and M−1
d become the stage one and stage two preconditioners, respectively.

The order of preconditioners is changed in the right preconditioned case. In (3.18), M−1
d and M−1

right become
the stage one and stage two preconditioners, respectively. We note that the order of stage one and stage two
preconditioners is the main difference between left and right preconditioned cases.

3.3. Spectral Analysis and Matrix Conditioning. Spectral plots related to Aorig and its related sub-
blocks Aorig

h , Aorig
l , and Aorig

S reveal the corresponding condition numbers. Since Aorig is symmetric positive
definite (SPD), all the related subblocks become SPD. Hence, the condition numbers are simply the ratio of
the maximum eigenvalue over the minimum one.

When we introduce diagonal scaling, A := Dorig−1
Aorig, A is not symmetric, hence, κ(A) is not necessarily

equal to λmax(A)
λmin(A) . A natural question arises: How are κ(A) and λmax(A)

λmin(A) related?

Since Aorig is SPD, then Dorig1/2
is defined as a real matrix. In order to make this connection, let us introduce

Asym := Dorig−1/2
AorigDorig−1/2

. Note that A and Asym are similar through

A = Dorig−1/2
AsymDorig1/2

. (3.19)

Then, they share the same spectrum:

σ(A) = σ(Asym). (3.20)

Using (3.20) and the fact that Asym is SPD, we get the following:

λmax(A)
λmin(A)

=
λmax(Asym)
λmin(Asym)

= κ(Asym). (3.21)
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Since A and Asym are similar, using (3.19) and the fact that κ2(Dorig1/2
) = κ(Dorig), we get an upper and a

lower bound for κ(A)
1

κ(Dorig)
κ(Asym) ≤ κ(A) ≤ κ(Dorig) κ(Asym). (3.22)

Equation (3.21) together with (3.22) reveal the connection we are after:

1
κ(Dorig)

λmax(A)
λmin(A)

≤ κ(A) ≤ κ(Dorig)
λmax(A)
λmin(A)

. (3.23)

λmax(A)
λmin(A) gives a good estimate of κ(A) when κ(Dorig) ≈ 1. Since our permeability field is highly heterogeneous,

this will hardly happen. Therefore, λmax(A)
λmin(A) does not reflect κ(A). Furthermore, subblocks of A are related

to that of Aorig through the following:

Ah = Dorig−1

h Aorig
h , Ah ∼ Dorig−1/2

h Aorig
h Dorig1/2

h

Al = Dorig−1

l Aorig
l , Al ∼ Dorig−1/2

l Aorig
l Dorig1/2

l

AS = Dorig−1

l Aorig
S , AS ∼ Dorig−1/2

l Aorig
S Dorig1/2

l .

First of all, each subblock is similar to a SPD matrix, implying that the eigenvalues are real positive. In
particular, positive definiteness of AS comes from the fact that the Schur complement Aorig

S of the SPD
matrix Aorig is also SPD.

For each of the above subblocks, if we employ similar arguments that led to (3.23), we observe that the
ratio of maximum over minimal eigenvalues give us good estimate when κ(Dorig

h ) and κ(Dorig
l ) are both

close to 1—which is more likely to happen compared to κ(Dorig) ≈ 1 because permeability values are more
homogeneous within high and low permeable regions. In short, the spectral values of A and its subblocks
do not reveal much in terms of the condition number. That is why we directly computed condition number
values as given in Table 5. However, it is not just the condition number that plays the essential role for the
convergence of solvers. The distribution of the eigenvalues seems to be crucial as well. Especially, smallest
eigenvalues in spectral plots will help us reveal certain aspects of the solver performance. Due to (3.7), we
would like to emphasize that the spectrum of AS directly dictates the spectrum of the preconditioned system.
The spectral plot of AS can help to justify to employ a stage two preconditioner. Namely, if one observes an
outlier smallest eigenvalue in spectral plot of AS , this is the exactly the same eigenvalue which could not be
resolved by the stage one preconditioner. Then we can consider to use a stage two preconditioner to address
the complications that the outlier smallest eigenvalues can cause.

4. Deflation Methods

4.1. Fundamentals. In the recent years, deflation methods have been increasingly receiving particular
attention as a way for improving the convergence of linear iterative solvers. Deflation operators provide
means to remove the negative effect that extreme (usually small) eigenvalues have in the convergence of
Krylov iterative methods for solving symmetric and non-symmetric systems [10, 14, 19, 24, 40, 41, 42, 49, 50].
In most of these research efforts, deflation methods have been developed as a mechanism for systematically
expanding and refreshing the underlying Krylov subspace or for conceiving more effective preconditioning
techniques. Nevertheless, the use of deflation is not strictly confined to the setting of Krylov subspace
iterations (e.g., [8, 22, 58, 27]) or even to the solution of linear system of equations (e.g., [7, 33, 45]).

In addition, a given preconditioner can be complemented with a deflation procedure. In fact, deflation
can be used to take care of the “roughness” that was left out upon, for instance, decoupling the system.
Thus, deflation allows for knocking down components of the solutions associated with both small and large
eigenvalues generated by the permeability contrast. The two well-known strategies for deflation are the
Krylov based and the domain based methods. The former utilizes eigenspace information (in the form of Ritz
and harmonic Ritz vectors) from the underlying Krylov iterative solver to construct the deflating subspace;
see e.g. [24, 41]. Domain based approaches exploit coefficient contrasts to identify subdomain blocks in which
the solution demonstrates a certain behavior. Using the two information together geometric or algebraic
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operators are constructed to approximate eigenvectors; see [22, 56]. This makes the deflation dependent
highly on the domain and the behavior of the solution. The main advantage of the domain based deflation
methods is that they do not rely on the computation of approximate eigenvalues and eigenvectors. However,
we would like to accommodate domains with arbitrarily heterogeneous permeability fields. Therefore, we
only consider Krylov based deflation methods in this article.

A typical deflation operator is designed to process the extremal eigenvalues in such a way that the resulting
operator will a have better condition number in general. This goal can be accomplished in many ways. For
instance, mapping the smallest eigenvalues to 0 or shifting them to 1 or λmax(A). Let U ∈ Cn×r be the
exact invariant subspace corresponding to r smallest eigenvalues. One type of deflation operator that shifts
the r smallest eigenvalues to |λmax(A)| and leaves the rest of the spectrum unchanged is given by [9]:

C−1 = |λmax(A)| U(UT AU)−1UT + (I − UUT ), (4.1)

where |λmax(A)| is the magnitude of the largest eigenvalue. We utilize the operator in (4.1) as the stage two
preconditioner. If U is a near invariant subspace, then depending on the approximation quality of U , the pre-
conditioned matrix AC−1 will have eigenvalues close to the set {λr+1, . . . , λmax(A), |λmax(A)|, . . . , |λmax(A)|}.

A preconditioning technique which aims at utilizing the spectral information when restarting would be ideal.
The idea is to compute a near invariant subspace corresponding to the smallest eigenvalues. Indeed, the rate
of convergence is mostly governed by these smallest eigenvalues [9, 20]. The full-GMRES version behaves as
if the smallest eigenvalues were removed after some iterations. But this is no longer true in the restarted case.
Therefore, we remove them with the help of a deflation preconditioner. After each cycle of GMRES(m), the
preconditioner is updated by pulling out new eigenvalues. At each restart, new approximate eigenvectors
are estimated in order to increase the quality of the invariant subspace.

Deflation methods can be classified as static (domain-based) or dynamic (Krylov-based). In static deflation,
the deflation operator is determined before the iteration process starts and remains fixed throughout. In
the dynamic version, the deflation operator is regularly updated as the fresh Krylov subspace information is
computed. Each class of deflation is appropriate for different scenarios. Static deflation would be effective
if a priori physical properties are known, thereby intrinsic physics would be retained through the iterative
process. Usually, the domain based methods are static deflation methods by their nature. When the domain
and solution dependence are removed from the deflation method, we are rely on the information encoded in
the near invariant subspace. But, they are algebraic representations of the underlying physics and the two do
not exactly correspond. Adapting or updating available physical information can be needed and justifiably
dynamic deflation methods seem to be a right choice in such scenarios. Hence, dynamic deflation methods
are attractive because they have the capability to exploit available useful information in the Hessenberg
matrix.

In spite of all the aforementioned advances, the idea of deflating unwanted eigenvectors from the solution is
not new. During the end of the 60’s, all 70’s and beginning of the 80’s, deflation was primarily employed
for constructing meaningful solutions for (almost) singular linear systems [12, 13, 34, 47, 54]. A novel
view of the approach was provided by Nicolaides [44] who fundamentally propose to split the conjugate
gradient solution as the sum of a deflated subspace conjugate solution plus a particular solution into the
complementary subspace. Nicolaides realized that the new procedure was amenable to use in conjunction
with other preconditioners techniques. The idea was further explored by Mansfield in the setting of domain
decomposition [35, 36].

4.2. Deflation Methods under Consideration. We consider three well-known deflation methods: har-
monic [20], augmented [39], and Burrage-Erhel [9]. In the numerical experiments, we will denote these
methods as harmo, aug, BE, respectively. All the methods in this article are implemented as precondition-
ers to gmres(m).

All the deflation methods under consideration utilize a near invariant subspace extracted from the Hessen-
berg matrix produced by the underlying gmres(m) method. Chapman and Saad [15] report that harmonic
projection produces approximate eigenvectors that are more accurate than the ones produces by an oblique
projection. We prefer to compute the near invariant subspace corresponding to smallest eigenvalues by
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harmonic Ritz projection due to its favorable approximation properties of the eigenvectors corresponding to
smallest eigenvalues.

In Algorithms 4.1 and 4.2, we give the description of the harmonic and augmented deflation methods similar
to the ones given in [9]. The Burrage-Erhel deflation was introduced in [20] and it is an improved version
of the harmonic deflation method. Algorithmically, it is identical to harmonic deflation except that the
harmonic Ritz projection is used in the following improved way. A near invariant subspace Uold is computed
by using harmonic projection of the eigenresidual onto the Krylov subspace just like it is done in the harmonic
deflation method. At the end of the cycle, Uold is retained and a fresh near invariant subspaces, Ufresh, is
computed, then orthogonalized against Uold. They are appended to form a bigger subspace [Uold, Ufresh]. At
the end, an other harmonic projection of the eigenresidual is performed onto [Uold, Ufresh] to form the new
invariant subspace Unew. This way of updating U is slightly more costly but more dynamic and seems to
give better convergence rates.

Algorithm 4.1. harmo(m, l) (Deflation by eigenvalue shift) :

: convergence := false;
: choose x0;
: C := IN ;
: U := [ ];
: until convergence do

: r0 = b−Ax0;
: apply Arnoldi process to AC−1 to compute Vm;
: ym = argminy∈Rm‖βe1 − H̄my‖;
: xm := x0 + C−1Vmym;
: if ‖b−Axm‖ < tolerance; convergence := true;
: else

: x0 = xm;
: compute an invariant subspace U of A of size l by harmonic projection;
: compute C−1 = |λmax(A)| U(UT AU)−1UT + (I − UUT );

: endif;
: enddo;

Algorithm 4.2. aug(m, l) (Deflation by augmenting) :

: convergence := false;
: choose x0;
: U := [ ];
: until convergence do

: r0 = b−Ax0;
: apply Arnoldi process to A to compute Vm;
: W = [Vm, U ];
: compute AU ;
: orthogonalize AW to get V ;
: ym = argminy∈Rm+l‖βe1 − H̄y‖;
: xm := x0 + Wym;
: if ‖b−Axm‖ < tolerance; convergence := true;
: else

: x0 = xm;
: compute an invariant subspace U of A of size l by harmonic projection;

: endif;
: enddo;

In the original construction harmonic and Burrage-Erhel methods are designed to be right preconditioners.
In the right preconditioned case, the system becomes AC−1u = b, where x = C−1u. The residual expression
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is the following:
ri = b−AC−1ui = b−Ayi.

Assuming a restart at every m-th iteration, at iteration i the GMRES algorithm finds ‖r̄i‖ = ‖b−Axi‖:

‖r̄i‖ = min
yi∈κJ (i)(A,r0)

‖ri‖,

where

J (i) =
{

i, i 6= 0 mod m
m, i = 0 mod m

and in the next iteration i + 1, the vector AJ (i+1)−1r0 is added to Krylov subspace. Within each cycle, the
Krylov subspace over which we search the minimum gets bigger, this implies the well-known nonincreasing
residual:

‖r̄i+1‖ ≤ ‖r̄i‖, for i that stays in the same cycle. (4.2)

After a restart, for instance at iteration m + 1, computations take place in then new cycle as we look for

‖r̄m+1‖ = min
ym+1∈κ1(A,r′0)

‖rm+1‖, (4.3)

where r′0 = r̄m due to assigning ym+1 := xm before the start of the new cycle. (4.3) implies that ‖r̄m+1‖ ≤
‖b − Aym+1‖ for any ym+1 ∈ κ1(A, r′0), in particular for xm. Therefore, in exact arithmetic, GMRES(m)
generates a nonincreasing residual for the iteration between two cycles as well:

‖r̄m+1‖ ≤ ‖b−Axm‖ = ‖r̄m‖. (4.4)

In dynamic deflation, the preconditioner C−1 is updated at every cycle. But the residual expression does not
contain C−1 in the right preconditioned case. In the left preconditioner case, the system is C−1Ax = C−1b.
Then, ri = C−1b − C−1Ayi = b − Ayi. In the deflation methods used, C−1 depends on the near invariant
subspace. Since, the near invariant subspace is updated at the end of each cycle, the preconditioner does not
change within the cycle. At the restart, C−1 is updated, hence (4.4) does not hold. So, in exact arithmetic,
one can expect increase at the restart but (4.2) will hold within each cycle. This explains the oscillations we
observe for the left preconditioned case.

In conclusion, we observe in the numerical experiments that the performance of left and right preconditioners
are similar. However, the left preconditioner is less costly as explained in §3.2, but can create increasing
residual at the GMRES(m) restarts due to the updated near invariant subspace.

5. Numerical Experiments

The goal of the numerical experiments is to establish that our physics-based two-stage preconditioner is
an effective alternative for porous media flow applications in which our permeability-based heuristic holds.
Since the preconditioner is a two-stage preconditioner it has two components. The main component (in the
left preconditioned case) is the preconditioner in (3.2) or in (3.12). If needed, a stage two preconditioner can
be employed as in (3.17) to complement the stage one preconditioner. The stage two preconditioner chosen
is one of the mentioned deflation methods. Our two-stage preconditioner has also a version based on right
preconditioning. The one stage right preconditioner is given in (3.13) and its two stage counterpart is given
(3.18). The right preconditioner will give rise to nonincreasing residual in exact arithmetic whereas the
residual in the left preconditioner can have oscillations because the residual at the restarts can increase due
to the updated near invariant subspace as explained in §4.2.

The methods employed in this paper have been implemented in MATLAB 7.1. We define the preconditioner
effectiveness as the rate of decay of the relative residual with respect to matrix-vector multiplications (MVPs).
For each test problem, we report the residual and error convergence history and the iteration counts for the
left and the right preconditioned cases. In a given iteration plot, we report only the methods that converged.
If there is no corresponding iteration count, this means that the method did not meet the convergence
criterion. The stopping criterion is chosen to be ‖ rm

r0
‖2 < 1.0e− 10.
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Table 1 summarizes the characteristics associated with each of the 7 cases. As we can see, the cases represent
different permeability distribution geometries and contrasts. Consequently, the condition number of the
associated matrix varies and it is relatively high despite the modest size of the cases considered. We have
listed the condition numbers associated with the most relevant blocks without and with diagonal scaling. We
can clearly observe the crucial role that scaling and the proposed physics-based two-stage preconditioning
play in decreasing the condition number of the original matrix. In the results shown in the table, Md = I
(i.e., the two-stage preconditioner only includes high-permeability block solutions).

The system matrices for test problems 2–7 are the discretization matrices of one phase flow and are generated
by the reservoir simulator written in MATLAB by Aarnes, Gimse, and Lie [2]. In test problems 2–5, the flow
is directed from one corner to the opposite diagonal corner through a highly permeable layer-like channel
(see Figures 6, 8, 10, 12.) Test problem 1 is generated by using IPARS [61] in which a two phase flow
in 3D takes place in a depleted reservoir with a production well located at the center. In each numerical
experiment, the matrix corresponds to the pressure block in a pressure-saturation coupled system of a fully
implicit discretization of the underlying PDE systems. All of the system matrices, Aorig, are symmetric
positive definite, diagonally dominant, and highly ill-conditioned.

5.1. Spectral Analysis and Observations. In this section, we outline some of the connections between
the permeability field and the spectrum. There are only two permeability values (high and low value) in test
problems 1, 2, 3, 6, and 7, whereas in test problems 4 and 5 we allow variation in the permeability values
within the high and low permeable regions. There is several orders of magnitude difference between these
eigenvalues similar to the permeability values. The entries of Aorig corresponding to Aorig

h are larger than
that of Aorig

l due to high values of permeability in the high permeable region.

The severe contrast in permeability values creates two main clusters of eigenvalues of Aorig: large and small.
Our immediate observation is that the large and small eigenvalues of Aorig correspond to eigenvalues of Aorig

h

and Aorig
l , respectively.

When the permeability contrasts can be identified as layer-like channels, the cluster of large and small
eigenvalue is well separated. The separation becomes more apparent when the permeability values are ho-
mogeneous within the high and low permeable regions (see Figures 4, 6, 8, 14) and the separation diminishes
with less homogeneous permeability values (see Figure 12) and almost disappears (see Figure 10).

When the separation of high and low permeable regions are layer-like as in the case of a stratified reservoir,
there are one or more eigenvalues between the the large and small clusters (see Figures 4, 6, 8, 12). We claim
that these eigenvalues are associated to the permeability contrast and are captured by the eigenvalues of
Aorig

h . σ(Aorig
h ) and σ(Aorig

l ) share common eigenvalues in the small valued cluster (see Figures 6, 8, 12).
Comparing Figures 6, 10, and 12, we observe that the number of shared eigenvalues increase as the the
variation in the permeability values increases.

We emphasize that the above observations are valid when the permeability contrast can be identified as
layer-like channels where the high permeable regions are sandwiched by low permeable regions. One can
view these scenarios as generalizations of a stratified reservoir with alternating permeability values as in
Figure 4. When, this assumption is not in place, our heuristic for the separation of eigenvalue clusters is not
necessarily valid as seen in Figure 16.

5.2. Effects of Diagonal Scaling and Collecting Small Eigenvalues into a Subblock. When diagonal
scaling is introduced, eigenvalues of Ah capture most of the main features of the spectrum of A, especially
the smallest eigenvalues of A; see Figures 6, 8, etc. We observe that diagonal scaling greatly helps collecting
smallest eigenvalues of A in Ah. Therefore, when we introduce diagonal scaling, the main motivation is to find
smallest eigenvalues of A that are responsible for permeability contrasts. Once these small eigenvalues are
found, the preconditioner will target them to eliminate their complications for the solver. The existing
works by Vuik et.al. [57, 59] and Graham and Hagger [26] explain the effects of diagonal scaling in the
case of diffusion equation with highly contrasting diffusion coefficients. In particular, the number of high
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permeable regions in the reservoir that are sandwiched by low permeable region gives the exact the number
of smallest eigenvalues of A.

Next, we report some of our observations and state same heuristics on the behavior of smallest eigenvalues in
the spectrum. The number of well-identifiable high permeability regions sandwiched by low permeability
regions corresponds to the number of smallest eigenvalues of A. For instance, one smallest eigenvalue in test
problems 2 and 5 (see Figures 6 and 12) and several smallest eigenvalues in 1, 3, 4, 6, and 7 (see Figures 4,
8, 10, 14, and 16). In all these cases, smallest eigenvalues of A are captured as the smallest eigenvalues of
Ah subblock. For instance, they are very well captured in Figures 4, 6, 12, well in Figure 8, somewhat well
in Figures 10, 14, 16.

We observe that Ah and AS behave as if they are spectral complements in the following sense. If smallest
eigenvalues of A are well captured by Ah, then the Schur complement is free from smallest eigenvalues (as
in Figures 4, 6, 8, 12, 16), and by (3.16), so is the preconditioned system (see for example Figure 12). If not
(see Figures 10, 14), we employ a deflation method as stage two preconditioner on top of M−1

left. In Figures 10
and 14, we illustrate that several smallest eigenvalues of A of varying magnitude are not captured by Ah,
they show up as smallest eigenvalues of AS in varying magnitude. This is exactly where we employ a stage
two preconditioner and we show that this strategy is effective as in test problem 6 and Figure 15.

Table 1. The numbers of degrees of freedom and condition numbers.

Test Problem 1 2 3 4 5 6 7
N 1100 1600 1600 1600 1600 1600 1600
Nh;Nl 300;800 340;1260 421;1179 457;1143 462;1138 562;1038 747;853
Kmin 1.00e-03 1.00e-04 1.00e-04 1.00e-07 1.00e-02 3.16e-02 1.00e-01
Kmax 2.00e+06 1.00e+04 1.e+04 3.98e+04 1.00e+05 1.00e+05 1.00e+03
〈K〉 3.40e-01 2.20e-03 5.01e-04 2.29e-02 1.66e-01 6.03e+00 7.41e+00
cond(A) 1.92e+04 1.65e+05 2.54e+11 1.76e+13 1.33e+10 5.89e+10 1.72e+06
cond(Ah) 7.12e+03 2.92e+04 2.08e+09 4.52e+10 4.58e+08 8.43e+06 8.07e+04
cond(Al) 2.89e+00 1.64e+03 1.05e+03 1.54e+05 1.91e+04 8.08e+00 3.27e+02
cond(AS) 2.90e+00 1.77e+03 2.09e+03 3.17e+06 3.62e+04 1.34e+04 3.46e+02
cond(M−1

leftA) 2.92e+00 2.00e+03 1.23e+04 4.69e+07 3.18e+05 3.23e+04 9.45e+02
cond(Aorig) 1.92e+05 1.65e+11 2.34e+11 8.29e+12 1.57e+10 3.20e+10 3.36e+06
cond(Aorig

h ) 6.57e+03 4.35e+08 4.04e+09 1.61e+12 2.62e+08 7.37e+06 4.84e+04
cond(Aorig

l ) 4.03e+00 1.52e+03 9.81e+02 3.22e+05 2.08e+04 1.07e+01 3.09e+02
cond(Aorig

S ) 4.09e+00 1.64e+03 1.93e+03 1.89e+06 3.56e+04 1.09e+04 5.07e+02
cond(Morig−1

left Aorig) 5.92e+03 2.07e+06 2.67e+07 1.60e+09 4.58e+05 6.90e+04 2.19e+03

For a fair comparison between the methods, we need to explain clearly what the Krylov subspace size means
for each preconditioner. When a deflation method is employed, the Krylov subspace employed has two
pieces. The main piece has m− l vectors and the restarted GMRES uses these vectors. The other piece has
l vectors and we extract a near invariant subspace of size l corresponding to the smallest eigenvalues. For
instance, m + l = 50 means, harmo, aug, BE preconditioners are operating on a Krylov subspace of size 40
and the near invariant subspace is extracted by using a collection of l = 10 vectors in the harmonic Ritz
projection. For all the experiments, the ratio of the Krylov subspace size over the near invariant subspace
size is maintained as m : l = 4 : 1. Since, deflation preconditioners 2Stage+d(40,10), harmo(40,10),
aug(40,10) and BE(40,10) use 50 vectors, we compare them against gmres(50), 2Stage(50). In the
convergence plots, we always report the case m+ l = 40+10. The iteration count plots contain the following
m, l combinations: 8, 2; 12, 3; 16, 4; 20, 5; 24, 6; 28, 7; 32, 8; 36, 9; 40, 10; 44, 11; 48, 12.

The deflation methods we compare are given in §4.2. These methods are harmo(m,l), aug(m,l), and
BE(m,l). The comparisons are made against gmres(m+l), 2Stage(m+l), and 2Stage+d(m,l) where 2Stage(m+l)
means the two-stage preconditioner without a stage two preconditioner and 2Stage+d(m,l) means that the
Algorithm 4.1 is used as a stage two preconditioner.
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There are two important features with 2Stage preconditioner. The first one is the number of degrees of
freedom to be marked as high permeable should be small compared to the total number of unknowns. In
this work, we are using the geometric averaging as a way to separate the high permeability coefficients from
the small ones. In general, we have to be careful to decide the threshold (averaging) procedure that suits
best the separation between these regions. Additionally, high permeability regions may be disconnected and
create difficulties in the solution of corresponding block Ah. A finer procedure based on the conductivity
should basically place these coefficients out of block Ah since they do not contribute in the physical behavior
of flow.

The other main feature is to be able to solve a system in the subblock Ah. We expect to collect smallest
eigenvalues in Ah, thereby, this subblock contains the difficult part of the underlying problem. Hence, Ah

is ill-conditioned but small in size. In a recursive manner, further ordering can be applied to DOF in Ah if
there is extra variation in the high permeability values. This makes the size of Ah even smaller, hence, its
system solve easier. One can utilize various solvers considering the small size of Ah such as direct methods
or iterative methods like the deflation methods and AMG. For convenience, the system solve of Ah is done
by using the backslash solver in MATLAB.
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Figure 3. Test problem 1: Spectra corresponding to 7 layers.

5.3. Preconditioning Results on Different Test Problems. We now proceed to describe in detail the
results obtained for each test problem.

5.3.1. Test problem 1. This problem represents a two-phase flow in the so-called 3D pancake topology and the
data is generated by IPARS [61]. The reservoir consists of 7 layers with contrasting low and high permeability
values of 1.0e − 3 and 2.0e + 6, respectively. There are 3 layers of thin high permeable sandwiched by 4
layers of thick low permeable layers (see Figure 4). Thin and thick layers consist of 100 and 200 degrees of
freedom, respectively. This means that Nh = 300 and Nl = 800 (see Figure 3). The permeability field can
be determined directly by the underlying geometry without employing our marking strategy.

First of all, we observe that σ(Aorig
h ) and σ(Aorig

l ) are disjoint. This can be an indication that the cou-
pling between Aorig

h and Aorig
l is weak. In other words, they exhibit a behavior what we call as spectral

complementarity. When there is no coupling between Aorig
h and Aorig

l , then they become literally spectral
complements:

σ(Aorig
h ) = σ(Aorig) \ σ(Aorig

l ). (5.1)
When the coupling is weak, we can observe a similar behavior. However, (5.1) does not hold in the exact sense
but approximately. By abusing the concept in (5.1), we load more meaning to spectral complementarity when
we compare Ah and AS . If smallest eigenvalues of A are well captured by Ah, then the Schur complement
AS is free from smallest eigenvalues. In this case, we also identify Ah and AS as spectral complements.
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For the three high permeable layers, we see exactly 3 smallest eigenvalues of A. This is exactly the same
behavior reported [26, 57, 59] for the diffusion equation. The 3 smallest eigenvalues of A fully captured by
Ah, hence, we report a perfect example of spectral complementarity between Ah and AS . Due to this fact,
2Stage(50) preconditioner enjoys a constant number of 19 iterations independent of the size of the Krylov
subspace m. Since AS is free from small eigenvalues, there is no need for a stage two preconditioner. This is
justified by observing that there is no convergence improvement when stage two preconditioner is introduced.

All the deflation methods converge exhibiting roughly the same convergence behavior and outperform the
gmres(m) method. However, aug(m,l) shows sign of instability. Our preconditioners outperform the defla-
tion methods by observing that the decay of the residual and error of the 2Stage(50) and 2Stage(40,10)
preconditioners are the fastest; see Figure 5. The left and right preconditioned versions exhibit similar
behavior.

5.3.2. Test problem 2. The permeability field is designed to form a high permeability channel crossing the
reservoir diagonally. Since this channel is sandwiched by low permeable regions, we expect only 1 smallest
eigenvalue in A; see Figure 6. Indeed, we see an eigenvalue of A of magnitude O(e − 04) which is fully
captured by Ah, thereby, λmin(AS) = O(e− 03) and κ(AS) = O(e + 03).

Deflation methods almost always converged with the exception of aug(m,l) and BE(m,l) is the most effective.
Our preconditioners outperform deflation methods and employing the stage two preconditioner accelerates
the convergence; see Figure 7. 2Stage+d(40,10) enjoys the fastest convergence among the methods with
(m, l) = (40, 10). The left and right preconditioned versions exhibit similar behavior.

5.3.3. Test problem 3. The permeability field is designed to form two high permeability channels; see Figure 8.
The channels contain disconnected pieces, hence, we expect several smallest eigenvalues of A. Indeed, there
is a cluster of smallest eigenvalues of A which ranges between O(e − 10) to O(e − 07). This problem is a
difficult one considering the mentioned cluster and κ(A) = O(e + 11). Ah captures smallest eigenvalues of
O(e− 08) and misses the smaller ones. This yields several small eigenvalues of O(e− 03) in AS .

Considering the difficulty of the problem, harmo(m,l) ran into numerical problems during the computation of
the harmonic Ritz projection. The other methods did not have such troubles. However, none of the deflation
methods converged upto the desired accuracy both in the left and right preconditioned versions; see Figure 9.
Furthermore, we observe a remarkable error reduction for 2Stage(40,10), 2Stage(50) preconditioners,
where as for the rest it did not decrease at all. This is a very good indication that our preconditioners are
robust. Our left preconditioner performs better than the right one due to stall in both the error and residual
before reaching the desired accuracy. In addition, the stall comes much later when stage two preconditioner
is employed.

5.3.4. Test problem 4. The permeability field is designed to test if our preconditioners would work when there
is a large variation in the permeability values. So both high and low permeability regions contain highly
heterogeneous values. Given that κ(A) = O(e + 13) and that there is a cluster of smallest eigenvalues of
A which ranges between O(e − 10) to O(e − 05), the system matrix is the most difficult among the test
problems. The main feature that causes these difficulties is the highly heterogeneous permeability field.
Employing M−1

left brings κ(A) down to κ(M−1
leftA) = O(e + 07). However, Ah cannot capture the smallest

eigenvalues of A, thereby, an eigenvalue of O(e−05) is formed in AS and that seems to be the main reason for
the convergence failure for 2Stage(50). Employing the stage two preconditioner does not seem to eliminate
the complication. We observe a reduction in the norm of the error of 2Stage+d(40,10) whereas all the other
methods fail. Left preconditioned 2Stage+d(40,10) seems to reduce the error more than the right version.
In summary, none of the methods can solve this hard problem.

5.3.5. Test problem 5. This test problem is designed in such a way that the heterogeneity in the permeability
field of test problem 4 is decreased. This decreases the condition number, κ(A) = O(e + 10), and only one
eigenvalue of O(e− 09) appears in σ(A). One can still say that test problem 5 is among the difficult ones.
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Ah is very successful in capturing the smallest eigenvalues of A, thereby, λmin(AS) = O(e−03) and κ(AS) =
O(e + 04). For the left preconditioned case, 2Stage(50) converges and 2Stage+d(40,10) converges faster.
2Stage+d(m,l) converges for a bigger set of (m, l) which makes it more robust with respect to the sizes
of the Krylov subspace and the near invariant subspace. Among the deflation methods, BE(m,l) seems to
be the only converging one. For the left preconditioned case, the error reduction for 2Stage+d(40,10) is
better than that of BE(40,10). We notice that left preconditioning is more effective and results in more
convergence when stage two preconditioner is employed.

5.3.6. Test problem 6. This test problem contains a permeability field whose topology resembles a checker
board. One can still identify layer-like channels between the opposite corners. This test problem is designed
to test if our heuristics about the smallest eigenvalues is valid in this extreme case. Namely, when there is
layer-like channels, we can identify contrasting layers, hence, smallest eigenvalues arise due to these contrasts.

Test problem 6 is a difficult one with κ(A) = O(e + 10) and A has a cluster of smallest eigenvalues which
ranges between O(e − 09) to O(e − 06). Among the smallest eigenvalues , there is only one outlier with
magnitude O(e − 09) and Ah cannot capture that. This is reflected to AS as an outlier eigenvalue where
λmin(AS) = O(e − 04). However, Ah captures smallest eigenvalues of A of O(e − 06) which gives rise to a
favorable condition number; κ(M−1

leftA) = O(e+04). We observe a very effective 2Stage+d(m,l) for both left
and right preconditioned cases whereas all the deflation methods fail. Furthermore, in the left preconditioned
case, 2Stage(50) converges but slower than 2Stage+d(40,10). 2Stage(m+l) does not converge for most of
(m, l) combinations, employing a stage two preconditioner brings robustness and 2Stage+d(m,l) converges
for almost all (m, l) combinations in both left and right preconditioned cases. This is an effective use of
the stage two feature of our preconditioner which addresses the smallest eigenvalues of AS . In the left
preconditioned case, we notice a more improved convergence when the stage two preconditioner is employed
compared to right preconditioned case. However, right preconditioner gives a constant number of 36 iterations
for a large combination of (m, l) values where as left preconditioner iteration counts are in the vicinity of
400.

5.3.7. Test problem 7. We use a SPE10 data set to create this test problem with a mildly difficult condition
number; κ(A) = O(e + 06). Our heuristics about the eigenvalues are not necessarily valid due to the
absence of layer-like channels. Nevertheless, Ah captures most of the smallest eigenvalues of A, thereby,
κ(M−1

leftA) = O(e + 03). There is an outlier smallest eigenvalue of AS of O(e− 02) which is not small enough
to cause convergence difficulties for 2Stage(m+l) and 2Stage+d(m,l). In conclusion, 2Stage(m+l) and
2Stage+d(m,l) converge for almost every (m, l) combination for both left and right preconditioned cases,
whereas deflation methods fail with the exception that BE(m,l) show a sign slow convergence. The left and
right preconditioned versions exhibit similar behavior.

6. Conclusions

In this article, we present two-stage physics-based preconditioners that are designed to address severe con-
trasts in the underlying physical quantities such as permeability. The contrasts give rise to extremely small
eigenvalues and they seem to be the main bottleneck for iterative solvers. The application of interest is
single- or multi-phase flow in porous media where jumps in the PDE coefficients come from the contrasts in
the permeability field.

The main objective of the present work is to introduce a novel physics-based preconditioning strategy for
solving problems with high physical contrasts in porous media applications. These stringent situations
commonly arise, for example, in multilayered geological formations composed of different type of rocks.
We assume that the porous media consist of highly permeable interconnected regions allowing for a strong
global flow conductivity (e.g., channelized media). Therefore, the main assumption behind this article is that
permeability is the fundamental physical quantity that basically defines and governs flow trends in porous
media. Hence, permeability should dictate the way we solve linear equations. Figure 1 illustrates this type
of permeability distribution settings that we are interested in handling efficiently from the iterative solution
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standpoint. We propose a two-stage physics based preconditioner with an optional stage two deflation
preconditioner as outlined in Algorithm 3.1.

The matrices under investigation correspond to the pressure block in a pressure-saturation coupled system
of a fully implicit discretization of the underlying PDE system and they are symmetric positive definite,
diagonally dominant, and highly ill-conditioned.

Since, historically deflation methods are designed to address extremal eigenvalues, we compare our precon-
ditioner to these methods as well as use them as an optional stage two preconditioner. We compare our
preconditioner to three well-known deflation methods: harmonic [20], augmented [39], and Burrage-Erhel [9].
These are dynamic deflation methods where the near invariant subspace U is extracted by a harmonic Ritz
projection from the Hessenberg matrix. This is the standard way of computing the near invariant sub-
spaces in all of our numerical experiments. We report that our preconditioners–even without stage two
preconditioner–outperform all of the three methods. The best competitor and the most unstable methods
are Burrage-Erhel(m,l) and augment(m,l), respectively. Furthermore, our preconditioners are robust with
respect to the Krylov subspace size. We report convergence for far more combinations of (m, l) compared to
deflation methods.

The selection of DOF in Ah is purely algebraic, hence, we emphasize that our preconditioners are algebraic
in nature. The biggest advantage of our preconditioners is the fact that they can handle flexible and realistic
reservoir topology. Since, a typical dynamic deflation method is also algebraic in nature and our two-stage
preconditioners allow the use of a stage two preconditioner, a dynamic deflation method becomes a suitable
choice for a stage two preconditioner in our framework. Performance of left and right preconditioners are
similar. Left preconditioner is less costly but can create increasing residual at the GMRES(m) restarts due
to the updated near invariant subspace.

Despite the effectiveness of the proposed physics-based preconditioners there are many research issues that
remain open. We list some of the one that we consider promising to address in the near future:

• In some stringent situations, deflation may not be sufficiently robust as a second stage preconditioner
in the advent of either extreme ill-posedness (due to inner significant heterogeneities in low- or
high-permeability regions) or to the size of the block Al. Thus, we need to explore variations of
the method such as multi-stage preconditioning and the use of solvers such as algebraic multigrid
(AMG), algebraic multilevel iterations (AMLI) and sparse approximate inverse (SPAI) methods to
hopefully speedup the solution of both the Ah and Al blocks.

• Our method is based on static permeability information and does not account for a better assessment
of the true media connectivity. We believe that streamlines or percolative methods should be very
useful in defining improved physics-based preconditioning strategies since they can detect preferential
flow paths in a more reliable way.

• Connections of nested versions of the present methodology (i.e., multi-stage preconditioning) with
AMG methods seems to be in order to design improve solution heuristics according to the connectivity
strength between matrix coefficients and the underlying physical domain.

• Last but not least, many researchers are devoted to the development of accurate and efficient multi-
scale methods. We believe that our method can be seen as high-level approach where these methods
can be further extended to tackled fine scale solutions such as in [1, 25, 28].
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Figure 4. Test problem 1: (Left) Spectra. (Right) 3D two-phase flow generated in IPARS: Log

permeability field. High and low permeability values are 2.0e+6 and 1.0e-3, respectively.
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Figure 5. Test problem 1: Iteration counts and convergence history for m, l = 40, 10 and m+ l =

40 + 10. Top (left preconditioned), bottom (right preconditioned).
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Figure 6. Test problem 2: (Left) Spectra of various matrices. (Right) Log permeability field.
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Figure 7. Test problem 2: Iteration counts and convergence history for m, l = 40, 10 and m+ l =

40 + 10. Top (left preconditioned), bottom (right preconditioned).
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Figure 8. Test problem 3: (Left) Spectra of various matrices. (Right) Log permeability field.
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Figure 9. Test problem 3: Iteration counts and convergence history for m, l = 40, 10 and m+ l =

40+10. Top (left preconditioned); note that only 2Stage(50), 2Stage+d(40,10) converge. Bottom

(right preconditioned); note that 2Stage+d(40,10) has a dramatically decreasing error.
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h and Aorig

l , Aorig
S ; A, Ah and Al AS .

(Right) Log permeability field.
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Figure 11. Test problem 4: Convergence history for m, l = 40, 10 and m + l = 40+10. Left (left

preconditioned); note that none of the methods converge. Right (right preconditioned); note that

none of the methods converge.
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Figure 12. Test problem 5: (Left) Spectra of various matrices. (Right) Log permeability field.
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Figure 13. Test problem 5: Top (left preconditioned); note that only 2Stage(50),

2Stage+d(40,10), BE(40,10) converge. Bottom (right preconditioned); note that error reduction

for 2Stage(50), 2Stage+d(40,10) is much better than BE(40,10).
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Figure 14. Test problem 6: (Left) Spectra of various matrices. (Right) Log permeability field.
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Figure 15. Test problem 6: Convergence history for m, l = 40, 10 and m + l = 40 + 10. Top (left

preconditioned); note that only 2Stage(50), 2Stage+d(40,10) converge. Bottom (right precondi-

tioned); note that only 2Stage(50), 2Stage+d(40,10) converge.
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Figure 16. Test problem 7: (Left) Spectra of various matrices. (Right) Log permeability field.
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Figure 17. Test problem 7: Convergence history for m, l = 40, 10 and m + l = 40 + 10. Top (left

preconditioned); note that only 2Stage(50), 2Stage+d(40,10) converge. Bottom (right precondi-

tioned); note that only 2Stage(50), 2Stage+d(40,10) converge.
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