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Abstract

We consider the Stokes equation with high-contrast viscosity coefficients. We construct a pre-
conditioner that is robust with respect to contrast size and mesh size simultaneously based on the
preconditioner proposed by Aksoylu et al. (2008). We examine the performance of our precon-
ditioner against multigrid and provide a comparative study reflecting the effect of the underlying
discretization and the aspect ratio of the mesh. We address the rigorous justification of the solver
methods, p-Uzawa and p-Minres, used in Aksoylu and Unlu (2013), and compare the results with
additional solver method, Schur complement reduction (SCR). We observe that our preconditioner
is only contrast size robust under the p-SCR solver. The inexact p-Uzawa solver remains to be the
best choice for the most effective performance of our preconditioner as we observe contrast size
and mesh size robustness simultaneously in this case. As the contrast size grows asymptotically,
we prove and numerically demonstrate that the inexact p-Uzawa solver converges to the exact one.
Finally, we show that our preconditioner is contrast size and mesh size robust under p-Minres
when the Schur complement solve is accurate enough.

Keywords: Stokes equation, high-contrast, high-contrast viscosity, robust preconditioning, Schur
complement, singular perturbation analysis.

1. Introduction

In this paper, we consider the following stationary Stokes equation in a domain Ω⊂ R2:

−∇ · (ν ∇u)+∇p = f in Ω,
∇ ·u = 0 in Ω,

(1)
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Figure 1: Ω = ΩH ∪ΩL where ΩH and ΩL are highly- and lowly-viscous regions, respectively.

where u, p, and f stand for the velocity, pressure, and body force, respectively. Here, we aim to
treat piecewise constant high-contrast viscosity values with the configuration depicted in Figure 1:

ν(x) =

{
m� 1, x ∈ΩH ,

1, x ∈ΩL.
(2)

Piecewise constant high-contrast viscosity values are utilized in applications in geodynamics [1,
2, 3] and polymer melting in plastics industry through the process of single screw extrusion [4, 5].
High-contrasts are realistic in these applications. For instance, contrasts up to 109 and 1012 are
used in single screw extrusion applications; see [4, p. 51] and [5, p. 185 and Fig. 3].

The discontinuity and the high-contrast values in the viscosity values cause loss of robustness
of preconditioners. Aksoylu and Beyer have shown in [6, 7] that the roughness of coefficients cre-
ates serious complications for the diffusion equation with such coefficients in the operator theory
framework. Moreover, it was shown in [6] that the standard elliptic regularity in the smooth coef-
ficient case fails to hold. Moreover, the domain of the diffusion operator heavily depends on the
regularity of the coefficients. Similar complications also arise in the Stokes case. In this article, we
address these complications and show rigorous justification of the methods given in [8] through
the help of robust preconditioning. For that, we construct a robust preconditioner based on the
one proposed in [9], which we call as the Aksoylu-Graham-Klie-Scheichl (AGKS) preconditioner,
which originates from the family of robust preconditioners constructed for the high-contrast dif-
fusion equation under finite element discretization by Aksoylu et al. in [10]. It was proven and
numerically verified to be m- and h-robust simultaneously for the different discretizations of the
same problem and also for different problems; see [11], [12],[8]. One of the strengths of our pro-
posed preconditioner is rigorous justification obtained through the usage of singular perturbation
analysis (SPA). Such dramatic extensions rely on the generality of the employed SPA. In this arti-
cle, we aim to bring the same rigorous preconditioning technology to vector valued problems such
as the Stokes equation. We extend the usage of AGKS preconditioner to the solution of (1).

The componentwise treatment of the discretization of (1) gives rise to the following systems
of equations:  Kx(m) 0 (Bx)t

0 Ky(m) (By)t

Bx By 0

 ux

uy

p

=

 f x

f y

0

 , (3)

where K∗ = Kx = Ky are the scalar diffusion matrices, and Bx and By represent the weak deriva-
tives in x and y directions, respectively. We apply the AGKS preconditioning idea to the Kx and
Ky blocks by further decomposing each of them as the following 2×2 block system; see [12, Eqn.
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11], [11, Eqn. 4], [9, Eqn. 3]:

K∗(m) =

[
K∗HH(m) K∗HL
K∗LH K∗LL

]
, (4)

where the degrees of freedom (DOF) are identified as high and low based on the viscosity value
in (2) and K∗HH ,K

∗
HL,K

∗
LH , and K∗LL denote couplings between the high-high, high-low, low-high,

and low-low DOF, respectively. The exact inverse of K∗ can be written as:

K∗
−1

=

[
IHH −K∗

−1

HH K∗HL
0 ILL

] [
K∗
−1

HH 0
0 S∗

−1

] [
IHH 0

−K∗LHK∗
−1

HH ILL

]
, (5)

where IHH and ILL denote the identity matrices of the appropriate dimension and the Schur com-
plement S∗ is explicitly given by:

S∗(m) = K∗LL−K∗LHK∗
−1

HH (m)K∗HL. (6)

The AGKS preconditioner is defined as follows:

K̂∗
−1
(m) :=

[
IHH −K∞†

HHK∗HL
0 ILL

][
KHH(m)∗

−1
0

0 S∞−1

][
IHH 0

−K∗LHK∞†

HH ILL

]
, (7)

where K∞†

HH and S∞ are the asymptotic values of K∗
−1

HH and S∗, respectively; see [9, Lemma 1].

1.1. Design idea of the preconditioner
In the saddle point system (3), (1,1)-block K(m) is the only block that contains the contrast

size m. The contrast is due to the presence of both low (O(1)) and high (O(m)) magnitude partial
differential equation (PDE) coefficients. This disproportionate coupling leads to small (O(m−1))
eigenvalues in the diagonally scaled stiffness matrix. In a high-contrast elliptic PDE, the solver
issues, in particular the loss of robustness, are largely due to those small eigenvalues. The treat-
ment of the coupling between DOF associated to low and high PDE coefficients is a delicate task.
It would be ideal to decouple the problem without complications. Hence, the design idea of the
AGKS preconditioner is based on decoupling. This enables us to create blocks in the system ma-
trix associated to low and high magnitude DOF that are entirely of O(1) and O(m), respectively.
The AGKS preconditioner’s decoupling role becomes more and more conspicuous as m → ∞

and that is why the effectiveness of the preconditioner increases for m in the asymptotic regime.
Once the decoupling is in place, the AGKS preconditioner employs multigrid (MG) because it can
effectively handle both blocks.

When the contrast size in K(m) is treated properly as above, the need for a sophisticated pre-
conditioner for S can be eliminated. More precisely, S can simply be handled by a scaled pressure
mass matrix (PMM). This is one of the main distinguishing features of AGKS among other avail-
able Stokes preconditioners. Consequently, we are able to construct an effective preconditioner
for the high-contrast Stokes equation for which we numerically accomplish the contrast size and
mesh size robustness simultaneously. Its effectiveness is supported by rigorous justification which
involves SPA. The flexibility of the utilized SPA allowed us to transfer our established results for
the high-contrast diffusion equation to the Stokes case.
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The remainder of the paper is structured as follows. In Section 2, we describe p-Uzawa, p-
SCR, and p-Minres solvers and present a convergence result for the p-Uzawa solver. In Section
3, we comparatively study the performance of the AGKS preconditioner against MG, used un-
der the above solvers. We highlight important aspects of robust preconditioning and draw some
conclusions in Section 4.

2. Solver methods

There are many solution methods proposed for the system of equations in (3). Based on where
the emphasis is put in the design of a solution method, solving a saddle-point matrix system can
be classified into two approaches: preconditioning and solver. The preconditioning approach
aims to construct novel preconditioners for standard solver methods such as Uzawa, Minres, and
the Schur complement reduction (SCR) whereas the solver method approach aims to construct a
solver by sticking with standard preconditioners such as MG for the K matrix and PMM or least-
squares (LSQR) commutator (BFBt) preconditioner for the S matrix. See [8, Section 15.1.1] for
the detailed literature review of both approaches.

The Ladyzhenskaya-Babuska-Brezzi (LBB) stability of Stokes discretizations plays an impor-
tant role in the utilization of weak formulations to solve (1). Thus, we start by stating the LBB
stability of our discretization, which is given in [13] for high-contrast viscosity:

sup
uh ∈ Vh

(div uh, ph)

‖uh‖V
≥ cLBB ‖ph‖Q, ph ∈ Qh.

2 (8)

There are many solution methods for the indefinite saddle point problem (3). We concentrate
on three different solver methods: the p-Uzawa, p-SCR, and p-Minres. We test the performance
the AGKS preconditioner with these solver methods. First, we establish two spectral equivalences:
between the velocity stiffness matrix K and the AGKS preconditioner and between the Schur
complement matrix S and the scaled PMM. Note that the constant cLBB in (8) is directly used for
the spectral equivalence of S in the following.

Lemma 2.1. Let K̂ and Ŝ denote the AGKS preconditioner and the scaled PMM. Then, for suffi-
ciently large m, the following spectral equivalences hold:

(a) (1− cm−1/2)(K̂u,u) ≤ (Ku,u) ≤ (1+ cm−1/2)(K̂u,u), (9)

(b) c2
LBB(Ŝp, p)Q ≤ (Sp, p) ≤ d(Ŝp, p)Q, (10)

where the constant c is independent of m, and cLBB is the constant in (8) which is independent of
m and h.

Proof. The proof of (a) and (b) can be found in [8, Lemma 15.1 (a)] and [13, Thm. 6], respectively.

For the p-Uzawa and p-Minres solvers, we present convergence and conditioning results based
on the above spectral equivalences.

2The associated spaces and weighted norms are defined as follows:
V := [H1

0 (Ω)]d ,Q :=
{

p ∈ L2(Ω) : (ν−1 p,1) = 0
}
,‖u‖V := (ν∇u,∇v)

1
2 , u ∈V,‖p‖Q := (ν−1 p, p)

1
2 , p ∈ Q.
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2.1. The preconditioned Uzawa solver
The Uzawa algorithm is a classical solution method which involves block factorization with

forward and backward substitutions. Here, we use the preconditioned inexact Uzawa method
described by [14]. The system (3) can be block factorized as follows:[

K(m) 0
B −I

][
I K(m)−1Bt

0 S(m)

][
u
p

]
=

[
f
0

]
. (11)

Let (uk, pk) be a given approximation of the solution (u, p). Using the block factorization (11)
combined with a preconditioned Richardson iteration, one obtains:[

uk+1

pk+1

]
=

[
uk

pk

]
+

[
I −K−1BtS−1

0 S−1

][
K−1 0
BK−1 −I

]([
f
0

]
−A

[
uk

pk

])
. (12)

This leads to the following iterative method:

uk+1 = uk +wk− K̂−1Btzk, (13a)

pk+1 = pk + zk, (13b)

where wk := K̂−1rk
1, rk

1 := f −Kuk − Bt pk, and zk := ŜB(wk + uk). Computing zk involves `
iterations of pCG. In this computation, since the assembly of S is prohibitively expensive, first we
replace it by S̃. Then, we utilize the preconditioner K̂ for K and Ŝ for S̃ where the explicit formula
is given by:

S̃ := BK̂−1Bt . (14)

Thus, the total number of applications of K̂−1 in (13a) and (13b) becomes `+ 2. We refer the
outer-solve (one Uzawa iteration) as steps (13a) and (13b) combined. In particular, we call the
the computation of zk as an S-solve; see Table 1. The stopping criterion of the S-solve plays an
important role for the efficiency of the Uzawa method and it is affected by the accuracy of K̂;
see the analysis in [14, Sec. 4]. In Section 2.2, we present the convergence analysis of p-Uzawa
method when we use the AGKS preconditioner for a velocity stiffness matrix. Following the
results obtained from this analysis, we determine the stopping criterion of the S-solve as follows:

Let ri
p be the residual of the S-solve at iteration i. Then, we abort the iteration when

‖ri
p‖
‖r0

p‖
≤ δtol

where either δtol = 0.5 or the maximum iteration reaches 4. For the details about the choice of
δtol , see Section 2.2.1.

2.2. Analysis of the preconditioned Uzawa solver
There have been many convergence analyses of the Uzawa solver in the literature. These

studies mostly covered the continuous viscosity case. To the authors’ knowledge, the convergence
analysis for the discontinuous viscosity case has never been addressed before. The extension of
the convergence analysis to the high-contrast viscosity is our novel contribution. The analysis in
[14] lays the foundation of our convergence results. Unlike their case of interest, i.e., a continuous
(constant) viscosity ν → 0, we treat discontinuous (piecewise constant) ν |ΩH → ∞. It was shown
in [14] that the convergence of the p-Uzawa solver with MG preconditioner was independent of
ν . This favorable property is due to the ν independent spectral equivalence between the velocity
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stiffness matrix and the MG preconditioner. For the case of discontinuous ν , we prove that the
p-Uzawa solver with AGKS preconditioner depends on ν ; see (9). Interestingly this dependence
turns out to be an advantage for the high-contrast case 3 because it lays the foundation of the results
in (a) and (b) below. By using (9), we establish three important results:

(a) We prove the convergence of the inexact p-Uzawa solver for large viscosity values ν |ΩH =m.
(b) We prove that the inexact p-Uzawa method converges to the exact one as m→ ∞.

(c) We quantify the convergence rate of the inexact p-Uzawa solver by the viscosity contrast m
in (18) and (19) when the AGKS preconditioner is used for the approximation of velocity
stiffness matrix.

We find that the p-Uzawa method is the most suitable solver for reflecting the effectiveness of
a preconditioner designed for high-contrast problems. Since viscosity contrast m can be directly
incorporated to the convergence rate, a preconditioner that can use large m values to its advantage
will be discerned most obviously under the p-Uzawa solver. In fact, we observe the superior
performance of the AGKS preconditioner when it is used under the p-Uzawa method.

Our convergence analysis is based on the one given by [14]. We start by defining the following
norms:

‖u‖K̂ := (K̂u,u)
1
2 for u ∈ Rd

‖p‖S̃ := (S̃p, p)
1
2 for p ∈ e⊥Q

Let
[

u
p

]
be the exact solution of (1) and ek be the error in the k-th step of the p-Uzawa method:

ek =

[
ek

u
ek

p

]
:=
[

u
p

]
−
[

uk

pk

]
.

Define δtol < 1 to be the prescribed tolerance of the S-solve enforcing:

‖p− pk‖s̃

‖p‖s̃
≤ δtol. (15)

Utilizing the spectral equivalence (9), we have the following error estimates for sufficiently large
m:

Lemma 2.2. Consider the inexact p-Uzawa method defined in (12), then we have the following
bounds for the error ek = (ek

u,e
k
p)

t:

‖ek+1
u ‖K̂ ≤ cm−1/2(2+δtol)‖ek

u‖K̂ +δtol‖ek
p‖S̃ (16)

‖ek+1
p ‖S̃ ≤ cm−1/2(1+δtol)‖ek

u‖K̂ +δtol‖ek
p‖S̃. (17)

Proof. The proof can be found in [14, Thm 4.2].

3The design of the AGKS preconditioner is centered on asymptotically large values of ν |ΩH = m. When m is
sufficiently large, the AGKS preconditioner becomes m-robust due to the spectral equivalence in (9).
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Theorem 2.1. Let the spectral equivalences in (9) and (10) hold. Then, the error bound for the
p-Uzawa solver is given by the following:

max{‖ek+1
u ‖K̂ ,‖ek+1

p ‖S̃}
max{‖ek

u‖K̂ ,‖ek
p‖S̃}

= δtol +O(m−1/2) (18)

‖ek
u‖K̂ +‖ek

p‖S̃

‖e0
u‖K̂ +‖e0

p‖S̃
=

5
2

δ
k
tol +O(m−1/2) (19)

Proof. One can write (16) and (17) as follows:[
‖ek+1

u ‖K̂
‖ek+1

p ‖S̃

]
≤C

[
‖ek

u‖K̂
‖ek

p‖S̃

]
=

[
cm−1/2(2+δtol) δtol

cm−1/2(1+δtol) δtol

] [
‖ek

u‖K̂
‖ek

p‖S̃

]
.

The result in (18) follows from

‖C‖∞ = cm−1/2(2+δtol)+δtol = δtol +O(m−1/2).

In order to prove (19), we need to find an upper bound for ‖Ck‖1. For that, we use the spectral
decomposition C =V DV−1. The proof is completed by using ‖Ck‖1 ≤ ρ(C)k‖V‖1‖V−1‖1 and the
following estimates:

ρ(C) = δtol +O(m−1/2), ‖V‖1 ≤
5
2
+O(m−1/2), ‖V−1‖1 = 1.

Remark 2.1. For m sufficiently large, it follows from Theorem 2.1 that the p-Uzawa solver always
converges when the preconditioner of choice is AGKS. In addition, the contraction factor for the
inexact Uzawa method converges to that of the exact one; δtol +O(m−1/2) and δtol , respectively.
We can deduce that only one iteration of pCG with the AGKS preconditioner is enough for the
accuracy of S-solve in the asymptotic regime 4. We give the justification of this deduction in
Section 2.2.1.

2.2.1. The choice of optimal δtol
Let k and ` be the number of outer- and S-solve iterations of the p-Uzawa solver. Here we

comment on the effect of the choice of δtol on the total number of iterations for varying m values.
An optimal δtol is chosen so that the total number of p-Uzawa iterations is minimized. In other
words, δtol guarantees not only the convergence, but also the efficiency of the p-Uzawa solver. Let
ε < 1 be the tolerance of the p-Uzawa solver and β < 1 be contraction factor of the S-solve. Using
(19) and (15), we have:

ρ(C)k ≤ ε, β
` ≤ δtol.

4For the definition of asymptotic regime, see Section 3. Note that the asymptotic regime of the p-Uzawa solver is
observed to be m≥ 103; see Table 1.
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Figure 2: The plot of Rinexact/exact for fixed β = 0.8, and m≥ 103.

In order to find the optimal δtol , we minimize the total number of p-Uzawa iterations given by k`:

k`≤ ln(ε)
ln(ρ(C))

ln(δtol)

ln(β )
=

ln(ε)
ln(β )

ln(δtol)

ln(ρ(C))
=: iterexact Rinexact/exact .

Here Rinexact/exact represents the ratio of the number of iterations of the p-Uzawa and exact Uzawa
solvers. It suffices to minimize Rinexact/exact to figure out the range for optimal δtol . We present the
plot of Rinexact/exact for a generic constant c = 1 5 in Figure 2. As m value gets larger, specifically
for m ≥ 103, we observe that Rinexact/exact reaches its minimum value for almost all δtol . As m
gets larger, the fact that the smallest value of Rinexact/exact → 1 indicates that the total number of
p-Uzawa iterations goes to that of the exact one. Since it was pointed out by [14] that δtol = 0.5 is
an optimal value for the MG preconditioner, we choose the same δtol in p-Uzawa in order to make
a fair comparison between AGKS and MG.

2.3. The preconditioned Schur complement reduction (p-SCR) solver
The p-SCR is a direct method which decouples the velocity and pressure equations. This

method involves the following block Gaussian eliminated system:[
K(m) Bt

0 S(m)

][
u
p

]
=

[
f
f p

]
, (20)

where f p =BK−1 f . Applying backward substitution, one obtains the following decoupled system
of equations:

Solve for p : Sp = f p, (21)

Solve for u : Ku = f −Bt p. (22)

5The constant c is from the explicit expression of O(m−1/2) in (9). A numerical study reveals that Rinexact/exact |c=1
is an upper bound for Rinexact/exact .
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The systems in (21) and (22) are solved by preconditioned Krylov solvers. Since the explicit
construction of S is required in each step of these subspace methods, we replace the system in (21)
by the following equation:

S̃p = f p, (23)

where S̃ is the approximation of S by BK̂−1Bt as in (14), and K̂ is the preconditioner for K. The
methods applied to solve (21) and (22) are referred as the S-solve and the K-solve, respectively;
see Table 2. Since the p-SCR solver is a direct method, the convergence of the S-solve highly
depends on the accuracy of the K−1 approximation used in each step. Therefore, instead of one
application of K̂−1 (as in the case of p-Uzawa solver), we use an accurate approximation of K−1

in each step of the S-solve. This is the main distinction between the usage of p-SCR and p-Uzawa
solvers.

2.4. The preconditioned Minres solver

The p-Minres is a popular iterative method applied to the system (3). Let v :=
[

u
p

]
. With the

given initial guess v0 :=
[

u0

p0

]
where p0 ∈ e⊥Q and with the corresponding error r0 := v− v0, the

p-Minres solver computes:

vk = argmin
v∈v0+K k(B−1A ,r̃0)

‖B−1
([

f
0

]
−A v

)
‖.

Here, r̃0 =B−1r0 and K k = span{r̃0,B−1A r̃0, . . .(B−1A )kr̃0}, and the preconditioner has the
following block diagonal structure:

B =

[
K̂ 0
0 Ŝ

]
, (24)

where K̂ and Ŝ are the preconditioners for K and S, respectively. In each step of the p-Minres solver
the above preconditioner is applied in the following fashion: for the K-block one application of
K̂ and for the S-block several applications of pCG to the S̃-system6 with Ŝ as the preconditioner.
The p-Minres iterations are called outer-solve whereas the pCG solve for the S̃-system is called
inner-solve.

The convergence rate of the p-Minres method depends on the condition number of the pre-
conditioned matrix, B−1A . Combining the spectral equivalences given in (9) and (10) with the
well-known condition number estimate, we obtain:

κB(B−1A )≤ max{(1+ cm−1/2),d}
min{(1− cm−1/2),c2

LBB}

It immediately follows that the convergence rate of the p-Minres method is independent of
m asymptotically.

9



ΩL
ΩH

ΩL

ΩH

ΩL

ΩH

Student Version of MATLAB Student Version of MATLAB
Student Version of MATLAB

Figure 3: The streamline plot of the high-contrast Stokes equation for three different high-viscosity island configura-
tions; (left) rectangular, (middle) L-shaped, and (right) two disconnected islands.

3. Numerical experiments

The goal of the numerical experiments is to compare the performance of the AGKS and MG
preconditioners by using three different solvers: p-Uzawa, p-SCR and p-Minres. We employ a
V(1,1)-cycle, with point Gauss-Seidel (GS) smoother. A direct solver is used for the coarsest
level.

We consider cavity flow depicted in Figure 3 with enclosed boundary conditions with right
hand side functions f = 1 and g = 0 on a 2D domain [−1,1]× [−1,1]; also see [8, Section 15.3].
The high-contrast viscosity values we test originate from the Sinker model introduced by May and
Moresi [1]. Physically, it corresponds to a slab subduction (or sinking block) application. The
Sinker model has been adopted by the geodynamics community as a benchmark problem; see [1,
Fig. 2], [2, Sec. 4.3], and [3, Sec. 5.2] for 3D applications. The Sinker model with second order
Stokes formulation is used in [2] and [15]. In addition, contrasts up to 109 and 1012 are realistic
values utilized in single screw extrusion applications; see [4, p. 51] and [5, p. 185 and Fig. 3].

The other formulation of the Stokes equation that is different from (1) is the so-called “velocity-
stress-pressure” [16, Equ. (7.15)] or the “stress-divergence” formulation [17, p. 277]. This is
a first order formulation of Stokes equation and has been used in [1], [3], and [18], whereas
(1) is a second order formulation. The two formulations are equivalent; see [17, p. 277]. But,
systems arising after discretization are different. This fact is also mentioned in [17, p. 277]. Our
preconditioner is designed for a second order formulation which is widely used in the numerical
analysis community. To extend the preconditioner to a first order formulation is beyond the scope
of this paper.

For each level of refinement, we present the number of iteration corresponding to each solve
(outer-solve and S-solve; S-solve and K-solve, outer-solve and inner-solve for p-Uzawa, p-SCR,
and p-Minres iterations, respectively). For the p-Uzawa and p-Minres methods, we only report
the performance of AGKS preconditioner; see [8] for the MG performance, and the further com-
parisons. In the tables, N, NS, and NK∗ stand for the number of DOF in A ,S, and K∗ systems,

6 Here, S̃ = BK̂−1Bt stands for the approximation of S. Since S is replaced by S̃, this turns the p-Minres algorithm
to an inexact one; see the inexactness discussion in [8, Section 15.3.2].
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Table 1: Number of iterations for p-Uzawa with AGKS preconditioning, Q2-Q1, rectangular mesh.

N\m 100 101 102 103 104 105 106 107 108 109

outer-solve
659 24 15 14 14 14 14 14 14 14 14
2467 38 21 18 19 18 18 18 18 18 18
9539 47 31 16 16 15 15 15 15 15 15
37507 70 50 17 16 15 15 15 15 15 15

NS\m 100 101 102 103 104 105 106 107 108 109

S-solve
81 3 2 3 3 3 3 3 3 3 3
289 3 3 3 3 3 3 3 3 3 3
1089 1 1 3 1 1 1 1 1 1 1
4225 1 1 3 1 1 1 1 1 1 1

Table 2: Number of iterations for p-SCR, Q2-Q1, rectangular mesh. (top) MG, (bottom) AGKS.

NS\m 100 101 102 103 104 105 106 107 108 109

S-solve
81 10 14 14 14 14 14 14 14 14 14
289 10 15 15 15 15 15 15 15 15 15
1089 11 16 17 17 17 17 17 17 17 17
4225 12 17 18 18 18 18 18 18 18 18

81 10 14 14 14 14 14 14 14 14 14
289 10 15 15 15 15 15 15 15 15 15
1089 11 16 17 17 17 17 17 17 17 17
4225 12 17 18 18 18 18 18 18 18 18

NK∗\m 100 101 102 103 104 105 106 107 108 109

K-solve
289 7 7 7 7 7 7 7 7 7 7
1089 6 7 7 7 7 7 7 7 7 7
4225 6 7 7 7 7 7 7 7 7 7
16641 6 7 7 7 7 7 7 7 7 7

289 12 8 5 3 3 3 1 1 1 1
1089 17 10 6 4 3 3 2 1 1 1
4225 24 14 7 5 3 3 1 1 1 1
16641 32 17 8 5 3 3 2 1 1 1

respectively. We enforce an iteration bound of 200. If the method seems to converge slightly
beyond this bound, we denote it by ∗.

In analyzing m-robustness, we observe a special feature. The iteration count remains fixed
when m becomes larger than a certain threshold value. We define the notion of asymptotic regime
to indicate m values bigger than this threshold. Identifying an asymptotic regime is desirable
because it immediately indicates m-robustness.

Table 3: Number of iterations for p-SCR, Q2-Q1, skewed mesh ( π

4 ). (top) MG, (bottom) AGKS.

NS\m 100 101 102 103 104 105 106 107 108 109

S-solve
81 17 23 27 31 32 32 32 32 32 32
289 20 28 33 38 39 38 38 38 38 38
1089 22 34 38 43 45 45 44 44 44 44
4225 25 41 43 47 49 49 49 49 49 49

81 16 22 25 30 30 31 31 31 31 31
289 18 26 31 38 38 38 37 37 37 37
1089 20 32 36 41 44 44 43 43 43 43
4225 22 40 41 45 48 48 48 48 48 48

NK∗\m 100 101 102 103 104 105 106 107 108 109

K-solve
289 8 9 9 9 9 9 9 9 9 9
1089 8 9 10 11 12 12 12 12 12 12
4225 8 9 11 13 13 13 13 13 13 13
16641 8 9 12 15 15 15 15 15 15 15

289 16 13 12 12 12 12 14 15 15 16
1089 22 15 14 13 13 14 14 16 16 18
4225 22 15 14 13 13 14 14 16 16 18
16641 22 15 14 13 13 14 14 16 16 18

We observe that the p-Uzawa method is m-robust as long as the optimal stopping criterion is
11



Table 4: Number of iterations for p-Minres with AGKS preconditioning, Q2-Q1, rectangular mesh.

N\m 100 101 102 103 104 105 106 107 108 109

outer-solve
659 29 23 18 16 18 16 16 18 20 20
2467 40 30 17 17 16 16 16 19 19 19
9539 50 45 20 20 19 16 16 20 20 20
37507 70 52 22 20 19 16 16 20 20 20

NK∗\m 100 101 102 103 104 105 106 107 108 109

inner-solve
81 20 20 5 5 5 5 5 5 5 5
289 20 20 5 5 5 5 5 5 5 5
1089 20 20 5 5 5 5 5 5 5 5
4225 20 20 5 5 5 5 5 5 5 5

used for the S-solve; see Table 1. This stopping criterion is chosen according to the convergence
analysis in Section 2.2. The AGKS preconditioner maintains m- and h-robustness simultaneously
when used as a preconditioner for p-Uzawa method. Asymptotically, only one iteration of pCG
is sufficient to obtain an accurate S-solve; see Table 1. When we calculate the total number of
AGKS applications explained in Section 2.2, we find 15× (1+ 2) = 45. Since this application
count remains fixed as the mesh is refined, we infer the h-robustness of the AGKS preconditioner;
see Figure 4. When the MG preconditioner is used, on the other hand, the p-Uzawa solver loses m-
and h-robustness, which results in unreasonable number of applications of the MG preconditioner
in total; see [8, Section 15.3.1].

For the p-SCR method, we apply the pCG method with either AGKS or MG preconditioner for
the K-solve, and pCG method with scaled PMM preconditioner for the S-solve (with an accuracy
of 5× 10−6 each.) Since an accurate K-system solution is required for both the K-solve and S-
solve, the p-SCR method plays a critical role in revealing the effectiveness of the AGKS and MG as
standalone preconditioners. Typically a sophisticated preconditioner such as BFBt is suggested to
handle the S system due to complications arising from high-contrast viscosity. We overcome these
complications by focusing on an accurate K-solve in each iteration of the S-solve. Therefore,
even a simple preconditioner such as scaled PMM maintains m-robustness resulting in a good
performance of pCG for the S-solve. But h-robustness was lost; see Table 2. As long as the K-solve
is accurate, the preconditioner choice (whether AGKS or MG) does not affect the performance
of pCG in S-solve. However, this performance heavily depends on the mesh aspect ratio and
the choice of discretization. We obtain the fastest convergence when Q2-Q1 discretization is
used on a rectangular mesh; see Table 2. For the Q2-Q1 discretization, aspect ratio deterioration
spoils the h-robustness of the MG preconditioner whereas it spoils the m-robustness of the AGKS
preconditioner; see Table 3.

For the p-Minres method, we have taken a novel approach for the S system, and use the inexact
p-Minres solver as explained in [8]. We observe that the choice of K̂−1–an application of either
MG or AGKS–in the inner-solve dramatically affects the performance inner-solve. Specifically,
the scaled PMM preconditioner is m-robust, but not h-robust for the inner-solve with MG, whereas
it is both m- and h-robust for inner-solve with AGKS.

When we compare the performance of the AGKS preconditioner under three different solvers,
we observe the following results.

The p-Uzawa solver turns out to be the best choice since AGKS preserves both m- and h-
robustness regardless of the discretization type, deterioration in the aspect ratio of the mesh, or

12
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Figure 4: The plot of the number of (top-left) MG applications versus problem size for fixed viscosity value m = 108,
(bottom-left) MG applications versus viscosity value for fixed level = 4 (top-right) AGKS applications vs problem
size for fixed viscosity value m = 108, (bottom-right) AGKS applications versus viscosity value for fixed level = 4.

the island configuration. The change in one of the above only causes increase in the number of
iterations, but qualitatively m- and h-robustness are maintained. Moreover, we observe that the
asymptotic regime of the p-Uzawa solver starts with the m value 103; see left-bottom in Figure 4.

The p-SCR solver, on the other hand, becomes the fastest for the problem in consideration with
Q2-Q1 discretization in a rectangular mesh. However, the AGKS under the p-SCR solver is not h-
robust; see the left column of Table 2. As island configuration changes, the number of iterations of
both K- and S-solve increases. In addition to that, as the discretization changes, the m-robustness
of PMM for S-solve is lost. Therefore, as the problem gets larger or island configuration becomes
more complicated, the p-SCR solver becomes less desirable than p-Uzawa; see bottom-left and
top-left in Figure 4. The asymptotic regime of the p-Uzawa solver is m≥ 107.

The AGKS preconditioner under the p-Minres solver also maintains both m- and h-robustness
as the discretization, the aspect ratio of the mesh, or the island configuration change; see Table 4.
However, the number of iterations in the p-Minres solver increases dramatically when the mesh
is skewed; see [8, Tables 15.9 and 15.10]. Compared to p-Uzawa, one needs a more accurate
inner-solve for a convergent p-Minres. In addition, the asymptotic regime of p-Minres solver
is m ≥ 107. Combining these three features, p-Minres becomes less desirable compared to p-
Uzawa. We observe that p-Minres method has the poorest performance among p-Uzawa and
p-SCR methods in terms of number of AGKS and MG applications. However, this solver is
potentially useful for large size problems as the AGKS preconditioner maintains h-robustness.

13



4. Conclusion

The novelty of the preconditioner lies in its design idea. The preconditioner plays the role of
a “decoupler” in order to prevent the complications caused by the high-contrast values. Once this
decoupling of O(m) and O(1) blocks is in place, standard MG can handle both blocks effectively.
If this decoupling is not in place, MG fails and this is what we want to establish in this article.
Furthermore, when the high-contrast in the K(m) block is treated properly, the need for a sophisti-
cated preconditioner for the Schur complement can be eliminated. Only after the use of the AGKS
preconditioner, the standard solver technology for smooth PDE coefficients can be exploited for
the high-contrast case.

Consequently, we are able to construct an effective preconditioner for the high-contrast Stokes
equation for which we numerically accomplish the contrast size and mesh size robustness simulta-
neously. Its effectiveness is supported by rigorous justification which involves SPA. The flexibility
of the utilized SPA allowed us to transfer our established results for the high-contrast diffusion
equation to the Stokes case.

We also investigate the MG and AGKS sensitivity against the coarsest grid solve. We had
observed that MG loses m- and h-robustness under P1-discretization when direct solve is replaced
by 200 SSOR iterations; see [9, Tables 9 and 10]. When the discretization is changed to be Q2,
we also observe a similar adverse behavior with 200 SSOR iterations. When the coarsest grid
solve is chosen to be CG, MG still is ineffective because of the loss of m- and h-robustness. On
the other hand, the performance of AGKS is affected minimally with SSOR coarsest grid solve.
More precisely, it still maintains m- and h-robustness, however, asymptotic regime is now m≥ 109

(instead of m≥ 107). The performance of AGKS even improves with CG coarsest grid solve. We
can infer one more robustness of the AGKS preconditioner. Namely, AGKS is robust with respect
to the choice of coarsest grid solve. For a fair comparison, we report the case when direct solve is
chosen for both preconditioners.
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