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Abstract. We study nonlocal equations from the area of peridynamics, an instance of nonlocal wave
equation, and nonlocal diffusion on bounded domains whose governing equations contain a convolution

operator based on integrals. We generalize the notion of convolution in order to accommodate local boundary

conditions. On a bounded domain, the classical operator with local boundary conditions has a purely discrete
spectrum, and hence, provides a Hilbert basis. We define an abstract convolution operator using this Hilbert

basis, thereby, automatically satisfying local boundary conditions. The main goal in this paper is twofold:

apply the concept of abstract convolution operator to nonlocal problems and carry out a numerical study
of the resulting operators. We study the corresponding initial value problems with prominent boundary

conditions such as periodic, antiperiodic, Neumann, and Dirichlet. In order to connect to the standard

convolution, we give an integral representation of the abstract convolution operator. For discretization, we
employ a weak formulation based on a Galerkin projection and use piecewise polynomials on each element

which allows discontinuities of the approximate solution at the element borders. We study convergence order
of solutions with respect to polynomial order and observe optimal convergence. We depict the solutions for

each boundary condition.
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1. Introduction

We study a class of nonlocal wave equations. The driving application is peridynamics (PD) whose equation
of motion corresponds exactly to the nonlocal wave equation under consideration. The same operator is also
employed in nonlocal diffusion [10, 13, 29]. Similar classes of operators are used in numerous applications
such as coagulation, image processing, particle systems, phase transition, population models.

PD is a nonlocal extension of continuum mechanics developed by Silling [30], is capable of quantitatively
predicting the dynamics of propagating cracks, including bifurcation. Its effectiveness has been established in
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sophisticated applications such as Kalthoff-Winkler experiments of the fracture of a steel plate with notches
[22, 32], fracture and failure of composites, nanofiber networks, and polycrystal fracture [23, 28, 34, 33]. Also
see the review and news articles [13, 14, 16, 31] for a comprehensive discussion, and the recent book [25]. In
addition, we witness a major effort to meet the need for mathematical theory for PD applications and related
nonlocal problems addressing, for instance, conditioning analysis, domain decomposition and variational
theory [7, 8, 9], discretization [9, 18, 35], nonlinear PD [19, 24], convergence of solutions [15, 17, 26, 27, 37].
Since PD is a nonlocal theory, one might expect only the appearance of nonlocal boundary conditions (BC).
Indeed, so far the concept of local BC does not apply to PD. Instead, external forces must be supplied
through the loading force density b [30]. On the other hand, we demonstrate that the anticipation that local
BC are incompatible with nonlocal operators is not quite correct.

In the unbounded domain case, in [11], we discovered that the governing nonlocal operator is a function
of a multiple of the classical governing operator. Therefore, for the bounded domain case, it was natural to
define the governing operator as a function of the corresponding classical operator. This opened a gateway
to incorporate local BC to nonlocal theories, which is the main theme of our foundation paper [1]. In [3],
we constructed novel governing operators in 1D that agree with the original bond-based PD operator in the
bulk of the domain and simultaneously enforce local Neumann and Dirichlet BC. In [6], we extended the
novel governing operators in 1D to arbitrary dimension. In [2], we studied other related governing operators.
In [5], we give an overview of local BC in general nonlocal problems.

A multiple of the Laplace operator with appropriate BC is chosen as the classical operator, which we
denote by ABC. In the bounded domain case, the spectrum of the Laplace operator with classical BC such as
periodic, antiperiodic, Neumann, and Dirichlet, is purely discrete. Furthermore, we can explicitly calculate
the eigenfunctions eBCk corresponding to each BC and the subscript signifies the BC used; BC ∈ {p, a, N, D}
where p, a, N, and D stand for periodic, antiperiodic, Neumann, Dirichlet, respectively. Let Ω := (−1, 1) be the
domain of interest throughout the paper. These eigenfunctions form a Hilbert (complete and orthonormal)
basis for L2

C(Ω) through which the abstract convolution can be defined as follows

C ∗BC u :=
∑
k

〈eBCk |C〉 〈eBCk |u〉 eBCk , (1.1)

where 〈·|·〉 denotes the inner product in L2
C(Ω) and is defined by

〈eBCk |u〉 :=

∫ 1

−1

(
eBCk
)∗

(y)u(y)dy.

Throughout the paper, we assume that C ∈ L2(Ω) is an even function. Namely,

C(−y) = C(y). (1.2)

Inspired by the governing equation on the unbounded domain, we define the nonlocal wave equation

utt(x, t) + fBC(ABC)u(x, t) = 0, x ∈ Ω, t > 0, (1.3)

where fBC : σ(ABC)→ R is a bounded function and σ(ABC) denotes the spectrum of ABC. The convolution in
(1.1) is used in the governing operator c− C∗BC where c is a suitable constant 1 and regulating function fBC
is defined as

fBC(ABC) := c− C ∗BC .

The class of nonlocal problems we consider has a governing equation that involves a convolution operator.
Both 1D bond based PD and nonlocal diffusion fall into this class. This type of governing equation with
prominent BC such as periodic, antiperiodic, Dirichlet, and Neumann are all instances of regular Sturm-
Liouville problems. For these problems, all BC leading to self-adjoint operators are known [36, Thm. 13.14].
If needed, all associated BC can be considered. All regular Sturm-Liouville operators are known to have a
purely discrete spectrum, in particular, there is a Hilbert basis of eigenfunctions. There are a number of
standard problems in higher dimensions that can be reduced to regular Sturm-Liouville problems on bounded
domains. Also, generically, a differential operator with regular coefficients on Rn has a purely discrete
spectrum, providing an eigenbasis of the underlying space. Since the essential ingredient is a self-adjoint
operator with a purely discrete spectrum, hence, our approach can easily cover higher spatial dimensions.

1In the PD context, the choice of c in practice is
∫
Ω C(y)dy with C ≥ 0.
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Figure 2.1. We extend the minimal operator A0, specifying boundary conditions such
as periodic, antiperiodic, Neumann, and Dirichlet boundary conditions, to an essentially
self-adjoint operator A0,p, A0,a, A0,N, A0,D, respectively. Finally, we arrive at self-adjoint
operators Ap, Aa, AN, AD by taking the closure of A0,p, A0,a, A0,N, A0,D, respectively.

The main goal in this paper is twofold: apply the concept of abstract convolution operator to nonlocal
problems such as the nonlocal wave equation given in (1.3) and carry out a numerical study of the resulting
operators. The choice of the Hilbert basis provides a flexibility in the construction of the abstract convolution
operator. We make this construction concrete by choosing the basis to be the eigenbasis of the classical
operator with prominent local BC indicated above. This is precisely the mechanism we use to incorporate
local BC into nonlocal problems. The theoretical aspects and foundations of this construction process are
discussed in our foundation paper [1].

The rest of the article is structured as follows. In Sec. 2, we define the classical operators with the
prescribed BC, domains of the operators, and the corresponding eigenpairs. In Sec. 3, we apply the theoretical
results from the foundation paper [1] to prominent BC such as periodic, antiperiodic, Neumann, and Dirichlet
BC. We identify the abstract convolution operator (1.1) as canonical. We obtain integral representations of
canonical convolution operators because they are more convenient for implementation. In the case of periodic
and antiperiodic BC, integral representations of the canonical convolutions are relatively direct to establish.
On the other hand, for Neumann boundary condition, this representation is considerably more involved,
requiring arguments related to half-wave symmetry of functions. For Dirichlet BC, we give representation
in terms limits of integral convolutions.

In Sec. 4, for Neumann and Dirichlet conditions, we give alternative governing operators that are struc-
turally simpler than canonical operators. These simple convolutions that are derived from certain combina-
tions of the periodic and antiperiodic extensions of the micromodulus function. They are used in numerical
experiments.

In Sec. 5, we present a comprehensive numerical treatment of the nonlocal wave equation. We have two
goals in numerical experiments. First, we want to demonstrate that discontinuities of the initial data remain
stationary for t ∈ R. Second, solutions satisfy the BC also for t ∈ R. In order to show that the two goals
are accomplished, we choose discontinuous initial data and run experiments showing wave evolutions for all
of the considered BC; periodic, antiperiodic, Neumann, and Dirichlet. Furthermore, by choosing continuous
initial data, we draw parallels between the local and nonlocal wave equations for Neumann and Dirichlet
BC. We conclude in Sec. 6.

2. Operator Definition and the Corresponding Eigenpairs

We define the minimal operator A0 : C2
0 (Ω,C)→ L2

C(Ω) by

A0u := −a0 u
′′,

where a0 is a suitable real number and u ∈ C2
0 (Ω,C). The operator A0 is densely defined, linear, and

symmetric, but not essentially self-adjoint. We give self-adjoint extensions of A0 by the closure of essentially
self-adjoint operators. The extension process is depicted in Fig. 2.1.

Based on this construction, we define the minimal operators of interest on Ω := (−1, 1) as follows

A0,BC : D(A0,BC)→ L2
C(Ω),
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whose domains and definitions are given, respectively,

D(A0,p) :=
{
u ∈ C2(Ω̄,C) : lim

x→−1
u(x) = lim

x→1
u(x), lim

x→−1
u′(x) = lim

x→1
u′(x)

}
,

D(A0,a) :=
{
u ∈ C2(Ω̄,C) : lim

x→−1
u(x) = − lim

x→1
u(x), lim

x→−1
u′(x) = − lim

x→1
u′(x)

}
,

D(A0,N) :=
{
u ∈ C2(Ω̄,C) : lim

x→−1
u′(x) = lim

x→1
u′(x) = 0

}
,

D(A0,D) :=
{
u ∈ C2(Ω̄,C) : lim

x→−1
u(x) = lim

x→1
u(x) = 0

}
,

where the governing operator is defined as

A0,BCu := −a0,BC u
′′, u ∈ D(A0,BC),

with

a0,p = a0,a =
1

π2
, a0,N = a0,D =

4

π2
.

The space C2(Ω̄,C) consists of the restrictions of the elements of C2(J,C) to Ω, where J runs through
all open intervals of R containing Ω̄. Note that C2(Ω̄,C) is a dense subspace of X := L2

C(Ω) and A0,BC is
a densely-defined, linear, and symmetric operator. We also note that A0,BC is a special case of a regular
Sturm-Liouville operator. In particular, it is essentially self-adjoint. The closure of A0,BC is ABC and is given
by

ABCu = −a0,BC u
′′,

where ′ denotes the weak derivative. The function u is a restriction to Ω, for BC = p, a, of an periodic and
an antiperiodic element of W 2(R,C), and, for BC = N, D, of element of W 2

0 (Ω,C), respectively.

2.1. Spectral Information, the Associated Hilbert Basis, and Compactness. Each operator has a
purely discrete spectrum consisting of the following eigenvalues

σ(Ap) =
{
k2 : k ∈ N

}
, σ(Aa) =

{
(k +

1

2
) 2 : k ∈ N

}
,

σ(AN) =
{
k2 : k ∈ N

}
, σ(AD) =

{
k2 : k ∈ N∗

}
.

The corresponding normalized eigenfunctions are as follows

epk(x) :=
1√
2
eiπkx, k ∈ N, eak(x) :=

1√
2
eiπ(k+ 1

2 )x, k ∈ N,

eNk(x) :=

{
1√
2
, k = 0,

cos
(
kπ
2 (x+ 1)

)
, k ∈ N∗,

eDk(x) := sin
(kπ

2
(x+ 1)

)
, k ∈ N∗.

Then, we have the following.

• Periodic: (epk)k∈Z is a Hilbert basis of L2
C(Ω), 0 is a simple eigenvalue and for every k ∈ N∗, k2

is an eigenvalue of geometric multiplicity 2, with corresponding linearly independent eigenfunctions
epk, e

p
−k.

• Antiperiodic: (eak)k∈Z is a Hilbert basis of L2
C(Ω), and for every k ∈ N, (k+(1/2))2 is an eigenvalue

of geometric multiplicity 2, with corresponding linearly independent eigenfunctions eak, e
a
−k−1.

• Neumann: eN0, e
N
1, . . . is a Hilbert basis of L2

C(Ω). Also note for k ∈ N∗ that

eN2k(x) = (−1)k cos(kπx), eN2k−1(x) = (−1)k sin
(
π
(
k − 1

2

)
x
)
.

• Dirichlet: eD1, e
D
2, . . . is a Hilbert basis of L2

C(Ω). Also note for k ∈ N∗ and l ∈ N that

eD2k(x) = (−1)k sin(kπx), eD2l+1(x) = (−1)l cos
(
π
(
l +

1

2

)
x
)
.

The following result outlines under what conditions fBC(ABC) becomes a compact operator.
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Lemma 2.1. (Compactness) Let B(σ(A),C) denote the space of complex valued bounded functions on
σ(A). Then, for

fp(Ap) ∈ B(σ(Ap),C), if (|fp(k2)|2)k∈N,

fa(Aa) ∈ B(σ(Aa),C), if (|fa([k +
1

2
]2)|2)k∈Z,

fN(AN) ∈ B(σ(AN),C), if (|fN(k2)|2)k∈N,

fD(AD) ∈ B(σ(AD),C), if (|fD(k2)|2)k∈N∗

is summable, then fBC(ABC) is a Hilbert-Schmidt operator, and hence compact. The latter is the case if

|fBC(λ)| 6 c λ−α

for every λ ∈ σ(Ap), σ(Aa), σ(AN) \ {0}, σ(AD), respectively, where α > 1/2, c > 0.

3. Canonical Convolutions and Their Integral Representations

The abstract convolution operator given in (1.1) is an infinite series. Integral representation of this series
is more convenient for implementation. We provide such representations of C∗BC corresponding to all types
of BC considered. The choice of a Hilbert basis determines an abstract convolution, which we refer to
as canonical. The most relevant BC in applications are Dirichlet and Neumann BC. In these cases, the
connection of the abstract convolution to an integral form is not direct. On the other hand, for periodic
and antiperiodic BC, that connection is relatively direct, calling for a periodic and an antiperiodic extension
of the micromodulus function, respectively. We define the extension of C to 2-periodic and 2-antiperiodic

functions Ĉp and Ĉa, respectively, by

Ĉp(x+ 2) = Ĉp(x), Ĉa(x+ 2) = −Ĉa(x), x ∈ R.

3.1. Integral Representation of the Periodic Operator. We study the properties of the operator
C∗p by starting with its eigenvalues with respect to the associated Hilbert basis

(
epk
)
k∈Z. Considering the

eigenfunctions epk and ep−k for k ∈ N of the classical operator Ap and using (1.2), we have

〈epk|C〉 = 〈ep−k|C〉 =
1√
2

∫ 1

−1

cos(πky)C(y) dy ∈ R.

Hence, C∗p is self-adjoint because all members of the sequence
(
〈epk|C〉

)
k∈Z are real. For c ∈ R, we conclude

that c− C∗p is a bounded self-adjoint function of Ap. Furthermore, if C is in addition positive and

c :=
1√
2

∫ 1

−1

C(y)dy,

then c− C∗p becomes positive operator with a spectrum that contains 0.

Next, we present how to obtain an integral representation of C∗p. First note that since

(C ∗p u)(x) =
∑
k∈N
〈epk|C〉 〈e

p
k|u〉 e

p
k(x) =

〈∑
k∈N

(e
p
k(x))∗ 〈C|epk〉 e

p
k|u〉, (3.1)

we concentrate on the term (epk(x))∗ 〈C|epk〉. We have

(e
p
k(x))∗ 〈C|epk〉 =

1

2
e−iπkx

∫ 1

−1

C∗(y)eiπky dy =
1

2

∫ 1

−1

C∗(y)eiπk(y−x) dy

=
1

2

∫ 1+x

−1+x

Ĉ∗p (y)eiπk(y−x) dy =
1

2

∫ 1

−1

Ĉ∗p (y + x) eiπky dy

=
1

2

∫ 1

−1

e−iπky Ĉ∗p (x− y) dy =
1√
2
〈epk|Ĉ

∗
p (x− ·)〉 . (3.2)

Since for every finite subset S ⊂ N,∑
k∈S

|(epk(x))∗ 〈C|epk〉 |
2 6

∑
k∈S

| 〈epk|C〉 |
2 6

∑
k∈N
| 〈epk|C〉 |

2,
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the sequence
(
|(epk(x))∗ 〈C|epk〉 |2

)
k∈N is summable. Using (3.2) and for u ∈ L2

C(Ω),∑
l∈N
〈epβ(l)|C〉 〈e

p

β(l)|u〉 e
p

β(l)(x) =
〈∑
l∈N

(epβ(l)(x))∗ 〈C|epβ(l)〉 e
p

β(l)|u
〉

=
1√
2

〈∑
l∈N
〈epβ(l)|Ĉ

∗
p (x− ·)〉 epβ(l)|u

〉
=

1√
2
〈Ĉ∗p (x− ·)|u〉 ,

where β : N→ Z is some bijection. Consequently, we arrive at the integral representation

(C ∗p u)(x) =
1√
2

∫ 1

−1

Ĉp(x− y)u(y) dy. (3.3)

3.2. Integral Representation of the Antiperiodic Operator. We study the properties of the operator
C∗a by starting with its eigenvalues with respect to the associated Hilbert basis

(
eak
)
k∈Z. Considering the

eigenfunctions eak and ea−k for k ∈ N of the classical operator Aa and using (1.2), we have

〈eak|C〉 = 〈ea−k−1|C〉 =
1√
2

∫ 1

−1

cos
[
π
(
k +

1

2

)
y
]
C(y) dy ∈ R.

Hence, C∗a is self-adjoint because all members of the sequence
(
〈eak|C〉

)
k∈Z are real. For c ∈ R, we conclude

that c− C∗a is a self-adjoint bounded function of Aa. Furthermore, if C is in addition positive and

c :=
1√
2

∫ 1

−1

C(y)dy,

then c− C∗a becomes a positive operator.

Next, we present how to obtain an integral representation of C∗a. Similar to (3.1), we concentrate on the
term (eak(x))∗ 〈C|eak〉. We have

(eak(x))∗ 〈C|eak〉 =
1

2
e−iπ

(
k+ 1

2

)
x

∫ 1

−1

C∗(y)eiπ
(
k+ 1

2

)
y dy =

1

2

∫ 1

−1

C∗(y)eiπ
(
k+ 1

2

)
(y−x) dy

=
1

2

∫ 1+x

−1+x

Ĉ∗a (y)eiπ
(
k+ 1

2

)
(y−x) dy =

1

2

∫ 1

−1

Ĉ∗a (y + x) eiπ
(
k+ 1

2

)
y dy

=
1

2

∫ 1

−1

e−iπ
(
k+ 1

2

)
y Ĉ∗a (x− y) dy =

1√
2
〈eak|Ĉ∗a (x− ·)〉 . (3.4)

Since for every finite subset S ⊂ N,∑
k∈S

|(eak(x))∗ 〈C|eak〉 |2 6
∑
k∈S

| 〈eak|C〉 |2 6
∑
k∈N
| 〈eak|C〉 |2,

the sequence
(
|(eak(x))∗ 〈C|eak〉 |2

)
k∈N is summable. Using (3.4) and for u ∈ L2

C(Ω),∑
l∈N
〈eaβ(l)|C〉 〈e

a
β(l)|u〉 e

a
β(l)(x) =

〈∑
l∈N

(eaβ(l)(x))∗ 〈C|eaβ(l)〉 e
a
β(l)|u

〉
=

1√
2

〈∑
l∈N
〈eaβ(l)|Ĉ

∗
a (x− ·)〉 eaβ(l)|u

〉
=

1√
2
〈Ĉ∗a (x− ·)|u〉 ,

where β : N→ Z is some bijection. Consequently, we arrive at the integral representation

(C ∗a u)(x) =
1√
2

∫ 1

−1

Ĉa(x− y)u(y) dy. (3.5)
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3.3. Integral Representation of the Neumann Operator. We study the properties of the operator
C∗N by starting with its eigenvalues with respect to the associated Hilbert basis

(
eNk
)
k∈N∗ . Considering the

eigenfunctions eNk for k ∈ N of the classical operator AN and using (1.2), we have

〈eNk|C〉 =

∫ 1

−1

cos
(kπ

2
(y + 1)

)
C(y) dy ∈ R

Hence, C∗N is self-adjoint because all members of the sequence
(
〈eNk|C〉

)
k∈N are real. For c ∈ R, we conclude

that c− C∗N is a self-adjoint bounded function of AN. Furthermore, if C is in addition positive and

c :=

∫ 1

−1

C(y)dy,

by observing ∫ 1

−1

C(y) dy − 〈eNk|C〉 =

∫ 1

−1

[
1− cos

(kπ
2

(y + 1)
)]
C(y) dy, k ∈ N∗,

we conclude that c− C∗N is a positive operator.

Next, we present how to obtain an integral representation of C∗N. Similar to (3.1), we concentrate on the
term (eNk(x))∗ 〈C|eNk〉. We have 〈eNk|C〉 = 0, for every odd k ∈ N because C is even. Since for every finite
subset S ⊂ N ∑

k∈S

|(eNk(x))∗ 〈C|eNk〉 |2 6
∑
k∈S

| 〈eNk|C〉 |2 6
∑
k∈N
| 〈eNk|C〉 |2,

the sequence
(
|(eNk(x))∗ 〈C|eNk〉 |2

)
k∈N is summable.

Since for k ∈ N, x, y ∈ R

cos
(kπ

2
(x+ 1)

)
cos
(kπ

2
(y + 1)

)
=

1

2

{[
cos
(kπ

2
(x− y + 1)

)
+ cos

(kπ
2

(x+ y + 1)
)]

cos
(kπ

2

)
+
[

sin
(kπ

2
(x− y + 1)

)
− sin

(kπ
2

(x+ y + 1)
)]

sin
(kπ

2

)}
,

the expression of (eNk(x))∗ 〈C|ek〉 reduces to an expression that involves only cosine terms. More precisely,
for even k ∈ N∗, we have

(eNk(x))∗ 〈C|eNk〉 = cos
(kπ

2
(x+ 1)

) ∫ 1

−1

C∗(y) cos
(kπ

2
(y + 1)

)
dy

=
1

2
cos
(kπ

2

)[ ∫ 1

−1

C∗(y) cos
(kπ

2
(x− y + 1)

)
dy +

∫ 1

−1

C∗(y) cos
(kπ

2
(x+ y + 1)

)
dy
]

= cos
(kπ

2

) ∫ 1

−1

C∗(y) cos
(kπ

2
(x− y + 1)

)
dy (3.6)

= cos
(kπ

2

) ∫ x+1

x−1

Ĉ∗p (y) cos
(kπ

2
(x− y + 1)

)
dy (3.7)

= cos
(kπ

2

) ∫ 1

−1

Ĉ∗p (x− y) cos
(kπ

2
(y + 1)

)
dy

= cos
(kπ

2

)
〈eNk|Ĉ∗p (x− idR)〉 . (3.8)

Here, it has been used that cos
(
kπ
2 (idR + 1)

)
is 2-periodic for even k ∈ N∗.

Remark 3.1. For BC = p, a, the critical step in obtaining an integral representation of (C ∗BC u)(x) is

connecting the term (eBCk (x))∗ 〈C|eBCk 〉 to the inner product 〈eBCk |Ĉ∗BC(x− ·)〉; see the last steps of periodic and
antiperiodic derivation in (3.2) and (3.4), respectively. More concisely, integral representation is obtained
by following the steps below.

(C ∗BC u)(x) =
∑
k∈N
〈eBCk |C〉 〈eBCk |u〉 eBCk (x)



8 B. AKSOYLU, H.R. BEYER, AND F. CELIKER

=
〈∑
k∈N

(eBCk (x))∗ 〈C|eBCk 〉 eBCk |u
〉

=
1√
2

〈∑
k∈N
〈eBCk |Ĉ∗BC(x− ·)〉 eBCk |u

〉
=

1√
2
〈Ĉ∗BC(x− ·)|u〉

In step (3.8), the term cos
(
kπ
2

)
prevents this connection. We need to connect to the inner product of another

function. Next, we pursue what that function should be. This is a nontrivial task and by the help of “half-wave
symmetry”, we identify one such function.

We note for k ∈ N∗ that

cos
(kπ

2

)
=


0 if k is odd,

1 if k is even and k/2 is even,

−1 if k is even and k/2 is odd.

Next, we decompose C into C1, C2 ∈ L2(Ω) defined by

C1(x) :=
1

2

[
C(|x|) + C(1− |x|)

]
, C2(x) :=

1

2

[
C(|x|)− C(1− |x|)

]
. (3.9)

Then, it is easy to check that

C = C1 + C2, (3.10)

and that they are even functions which satisfy a “half-wave symmetry” property, i.e.,

C1(1− x) = C1(x) and C2(1− x) = −C2(x), x ∈ [0, 1/2].

As a consequence, for even k ∈ N∗ and j = 1, 2,

〈eNk|Cj〉 =

∫ 1

−1

cos
(kπ

2
(y + 1)

)
Cj(y) dy

=

∫ 1

−1

[
cos
(kπ

2
y
)

cos
(kπ

2

)
− sin

(kπ
2
y
)

sin
(kπ

2

)]
Cj(y) dy

= cos
(kπ

2

) ∫ 1

−1

cos
(kπ

2
y
)
Cj(y) dy = 2 cos

(kπ
2

) ∫ 1

0

cos
(kπ

2
y
)
Cj(y) dy

= 2 cos
(kπ

2

)[ ∫ 1/2

0

cos
(kπ

2
y
)
Cj(y) dy +

∫ 1

1/2

cos
(kπ

2
y
)
Cj(y) dy

]
= 2 cos

(kπ
2

)[ ∫ 1/2

0

cos
(kπ

2
y
)
Cj(y) dy +

∫ 1/2

0

cos
(kπ

2
(1− y)

)
Cj(1− y) dy

]
= 2 cos

(kπ
2

)[ ∫ 1/2

0

cos
(kπ

2
y
)
Cj(y) dy + (−1)j+1(−1)k/2

∫ 1/2

0

cos
(kπ

2
y
)
Cj(y) dy

]
= 2 cos

(kπ
2

)[
1 + (−1)j+1(−1)k/2

] ∫ 1/2

0

cos
(kπ

2
y
)
Cj(y) dy,

and hence

〈eNk|Cj〉 = 0 if


k is odd,

k is even, k/2 is odd and j = 1,

k is even, k/2 is even and j = 2.

(3.11)

For even k ∈ N∗, using (3.10), we simply have

(eNk(x))∗ 〈C|eNk〉 = (eNk(x))∗ 〈C1|eNk〉+ (eNk(x))∗ 〈C2|eNk〉 . (3.12)
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The equation (3.6) holds for any even kernel function. We write (3.6) for Cj , j = 1, 2, which yields

(eNk(x))∗ 〈Cj |eNk〉 = cos
(kπ

2

) ∫ 1

−1

C∗j (y) cos
(kπ

2
(x− y + 1)

)
dy. (3.13)

Using (3.13) and (3.11), we obtain the following equations, if

k/2 is even, (eNk(x))∗ 〈C2|eNk〉 = 0, (eNk(x))∗ 〈C1|eNk〉 =

∫ 1

−1

C∗1 (y) cos
(kπ

2
(x− y + 1)

)
dy, (3.14)

k/2 is odd, (eNk(x))∗ 〈C1|eNk〉 = 0, (eNk(x))∗ 〈C2|eNk〉 = −
∫ 1

−1

C∗2 (y) cos
(kπ

2
(x− y + 1)

)
dy. (3.15)

Combining (3.14) and (3.15), for any even k ∈ N∗, we arrive at

(eNk(x))∗ 〈C1|eNk〉+ (eNk(x))∗ 〈C2|eNk〉 =∫ 1

−1

C∗1 (y) cos
(kπ

2
(x− y + 1)

)
dy −

∫ 1

−1

C∗2 (y) cos
(kπ

2
(x− y + 1)

)
dy. (3.16)

Now, applying the extension argument in (3.7) for the terms in (3.16), we obtain

(eNk(x))∗ 〈C1|eNk〉+ (eNk(x))∗ 〈C2|eNk〉 = 〈eNk|Ĉ∗1,p(x− idR)〉 − 〈eNk|Ĉ∗2,p(x− idR)〉 , (3.17)

where Ĉj,p denotes the extension of Cj to a 2-periodic function on R. Consequently, (3.17) and (3.12) yield

(eNk(x))∗ 〈C|eNk〉 = 〈eNk|Ĉ∗1,p(x− idR)〉 − 〈eNk|Ĉ∗2,p(x− idR)〉 . (3.18)

In the following, we extend (3.12) to odd k ∈ N∗. For this purpose, we note for even u ∈ L2
C(Ω) that its

2-periodic extension ûp is also even since for l ∈ N and x ∈ [−1− 2l, 1− 2l], we have

ûp(x) = u(x+ 2l) = u(−x− 2l) = ûp(−x− 2l + 2l) = ûp(−x).

Hence, it follows for even u and odd k ∈ N∗ that

〈eNk|ûp(x− ·)〉 = −〈eNk|ûp(−x− ·)〉 ,
which implies that

〈eNk|ûp(x− ·) + ûp(−x− ·)〉 = 0.

On the other hand, for even k ∈ N∗

〈eNk|ûp(x− ·)〉 = 〈eNk|ûp(−x− ·)〉 .
Consequently,

〈eNk|
1

2
[ûp(x− ·) + ûp(−x− ·)]〉 =

{
0 if k ∈ N∗ is odd,

〈eNk|ûp(x− ·)〉 if k ∈ N∗ is even.

Therefore, for k ∈ N∗, we conclude from (3.12) and (3.17) that

(eNk(x))∗ 〈C|eNk〉 = 〈eNk|
1

2
[Ĉ∗1,p(x− ·) + Ĉ1,p(−x− ·)− Ĉ∗2,p(x− ·)− Ĉ∗2,p(−x− ·)]〉 .

For k = 0, we have

〈eN0|
1

2
[Ĉ∗1,p(x− ·) + Ĉ1,p(−x− ·)− Ĉ∗2,p(x− ·)− Ĉ∗2,p(−x− ·)]〉

= 2−3/2
[ ∫ 1

−1

Ĉ∗1,p(x− y) dy +

∫ 1

−1

Ĉ∗1,p(−x− y) dy −
∫ 1

−1

Ĉ∗2,p(x− y) dy −
∫ 1

−1

Ĉ∗2,p(−x− y)] dy
]

= 2−3/2
[ ∫ 1

−1

Ĉ∗1,p(y − x) dy +

∫ 1

−1

Ĉ∗1,p(y + x) dy −
∫ 1

−1

Ĉ∗2,p(y − x) dy −
∫ 1

−1

Ĉ∗2,p(y + x) dy
]

= 2−3/2
[ ∫ 1

−1

C∗1 (y) dy +

∫ 1

−1

C∗1 (y) dy −
∫ 1

−1

C∗2 (y) dy −
∫ 1

−1

C∗2 (y) dy
]

= 2−1/2
[ ∫ 1

−1

C∗1 (y) dy −
∫ 1

−1

C∗2 (y) dy
]
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= (eN0(x))∗ 〈C|eN0〉+

√
2− 1

2

∫ 1

−1

C∗1 (y) dy −
√

2 + 1

2

∫ 1

−1

C∗2 (y) dy.

Hence

(eN0(x))∗ 〈C|eN0〉 eN0 = 〈eN0|
1

2
[Ĉ∗1,p(x− ·) + Ĉ∗1,p(−x− ·)− Ĉ∗2,p(x− ·)− Ĉ∗2,p(−x− ·)]〉 eN0 + γN,Ce

N
0,

where

γN,C := −
√

2− 1

2

∫ 1

−1

C∗1 (y) dy +

√
2 + 1

2

∫ 1

−1

C∗2 (y) dy.

Hence, we obtain∑
k∈N
〈eNk|C〉 〈eNk|u〉 eNk(x) =

〈∑
k∈N

(eNk(x))∗ 〈C|eNk〉 eNk|u
〉

=
〈∑
k∈N
〈eNk|

1

2
[Ĉ∗1,p(x− ·) + Ĉ∗1,p(−x− ·)− Ĉ∗2,p(x− ·)− Ĉ∗2,p(−x− ·)]〉 eNk|u

〉
+ γN,C 〈eN0|u〉

Consequently, we arrive at the integral representation

(C ∗N u)(x) =
1

2

∫ 1

−1

[
Ĉ1,p(x− y) + Ĉ1,p(−x− y)− Ĉ2,p(x− y)− Ĉ2,p(−x− y)

]
u(y) dy + γN,C 〈eN0|u〉 .

Recalling the definitions of C1 and C2 in (3.9) and employing a change of variable, we obtain a more compact
integral representation

(C ∗N u)(x) =

∫ 1

−1

Ĉp(|x− y| − 1)Peu(y) dy + γN,C 〈eN0|u〉 ,

where Pe denotes the even part of a function whose definition is given in (4.1).

3.4. Integral Representation of the Dirichlet Operator. We study the properties of the operator
C∗D by starting with its eigenvalues with respect to the associated Hilbert basis

(
eDk
)
k∈N∗ . Considering the

eigenfunctions eDk for k ∈ N∗ of the classical operator AD and using (1.2), we have

〈eDk|C〉 =

∫ 1

−1

sin
(kπ

2
(y + 1)

)
C(y) dy.

Hence, C∗D is self-adjoint because all members of the sequence
(
〈eDk|C〉

)
k∈N∗ are real. For c ∈ R, we conclude

that c− C∗D is a self-adjoint bounded function of AD. Furthermore, if C is in addition positive and

c :=

∫ 1

−1

C(y)dy,

by observing ∫ 1

−1

C dy − 〈eDk|C〉 =

∫ 1

−1

[
1− sin

(kπ
2

(y + 1)
)]
C(y) dy, k ∈ N∗,

we conclude that c− C∗D is a positive operator.

Next, we present how to obtain an integral representation of C∗D. Similar to (3.1), we concentrate on the
term (eDk(x))∗ 〈C|eDk〉. We have 〈eDk|C〉 = 0 for every even k ∈ N∗ because C is even. Since for every finite
subset S ⊂ N∗ ∑

k∈S

|(eDk(x))∗ 〈C|eDk〉 |2 6
∑
k∈S

| 〈eDk|C〉 |2 6
∑
k∈N∗

| 〈eDk|C〉 |2,

the sequence
(
|(eDk(x))∗ 〈C|eDk〉 |2

)
k∈N∗ is summable.

Since for k ∈ N∗, x, y ∈ R

sin
(kπ

2
(x+ 1)

)
sin
(kπ

2
(y + 1)

)
=

1

2

{[
cos
(kπ

2
(x− y + 1)

)
− cos

(kπ
2

(x+ y + 1)
)]

cos
(kπ

2

)]
+
[

sin
(kπ

2
(x− y + 1)

)
+ sin

(kπ
2

(x+ y + 1)
)]

sin
(kπ

2

)}
,
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the expression of (eDk(x))∗ 〈C|eDk〉 reduces to an expression that involves only sine terms. More precisely, for
odd k ∈ N∗, we have

(eDk(x))∗ 〈C|eDk〉 = sin
(kπ

2
(x+ 1)

) ∫ 1

−1

C∗(y) sin
(kπ

2
(y + 1)

)
dy

= sin
(kπ

2

) ∫ 1

−1

C∗(y) sin
(kπ

2
(x− y + 1)

)
dy

= sin
(kπ

2

) ∫ x+1

x−1

Ĉ∗a (y) sin
(kπ

2
(x− y + 1)

)
dy

= sin
(kπ

2

) ∫ 1

−1

Ĉ∗a (x− y) sin
(kπ

2
(y + 1)

)
dy

= sin
(kπ

2

)
〈eDk|Ĉ∗a (x− idR)〉 . (3.19)

Here, it has been used that sin
(
kπ
2 (idR + 1)

)
is 2-antiperiodic for odd k ∈ N∗.

Remark 3.2. Similar to the Neumann case discussed in Remark 3.1, the term sin
(
kπ
2

)
in (3.19) prevents us

from connecting the term (eDk(x))∗ 〈C|eDk〉 to the inner product 〈eDk|Ĉ∗D (x− ·)〉. Thus, we pursue an alternative.
It turns out that this alternative involves a projection which has a limit expression and it is presented in
Sec. 3.4.1.

We note for k ∈ N∗ that

sin
(kπ

2

)
=


0 if k is even,

1 if k is odd and (k − 1)/2 is even,

−1 if k is odd and (k − 1)/2 is odd.

As a consequence, if we denote by P the orthogonal projection onto the closure of the subspace

Span({eD4l+1 : l ∈ N}),
then for odd k ∈ N∗

(eDk(x))∗ 〈C|eDk〉 = (eDk(x))∗ 〈PC|eDk〉+ (eDk(x))∗ 〈C − PC|eDk〉

= 〈eDk|(P̂Ca)
∗(x− ·)− (Ĉa − P̂Ca)

∗(x− ·)〉 , (3.20)

where P̂Ca denotes the extension of PC to a 2-antiperiodic function on R. Here, we used the fact that eDk is
even and hence so are PC and C − PC.

In the following, we extend (3.20) to even k ∈ N∗. For this purpose, we note for every even u ∈ L2
C(Ω)

that its 2-anti-periodic extension ûa is also even since for l ∈ N and x ∈ [−1− 2l,−2l], we have

ûa(x) = (−1)lu(x+ 2l) = (−1)lu(−x− 2l) = (−1)l (−1)lûa(−x− 2l + 2l) = ûa(−x).

Hence it follows for even u and even k ∈ N∗ that

〈eDk|ûa(x− ·)〉 = −〈eDk|ûa(−x− ·)〉 ,
which implies that

〈eDk|ûa(x− ·) + ûa(−x− ·)〉 = 0.

On the other hand, for odd k ∈ N∗

〈eDk|ûa(x− ·)〉 = 〈eDk|ûa(−x− ·)〉 .
Consequently,

〈eDk|
1

2
[ûa(x− ·) + ûa(−x− ·)]〉 =

{
0 if k ∈ N∗ is even,

〈eDk|ûa(x− ·)〉 if k ∈ N∗ is odd.

Therefore, we conclude from (3.20) for k ∈ N∗ that

(eDk(x))∗ 〈C|eDk〉
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= 〈eDk|
1

2
[(P̂Ca)

∗(x− ·) + (P̂Ca)
∗(−x− ·)− (Ĉa − P̂Ca)

∗(x− ·)− (Ĉa − P̂Ca)
∗(−x− ·)]〉 .

Hence, we obtain∑
k∈N∗

〈eDk|C〉 〈eDk|u〉 eDk(x) =
〈 ∑
k∈N∗

(eDk(x))∗ 〈C|eDk〉 eDk|u
〉

=
〈 ∑
k∈N∗

〈eDk|
1

2
[(P̂Ca)

∗(x− ·) + (P̂Ca)
∗(−x− ·)− (Ĉa − P̂Ca)

∗(x− ·)− (Ĉa − P̂Ca)
∗(−x− ·)]〉 eDk|u

〉
=

1

2

[
〈(P̂Ca)

∗(x− ·)|u〉+ 〈(P̂Ca)
∗(−x− ·)|u〉 − 〈(Ĉa − P̂Ca)

∗(x− ·)|u〉 − 〈(Ĉa − P̂Ca)
∗(−x− ·)|u〉

]
.

Consequently, we arrive at the integral representation

(C ∗D u)(x) =
1

2

∫ 1

−1

[
(P̂Ca)(x− y) + (P̂Ca)(−x− y)− (Ĉa − P̂Ca)(x− y)− (Ĉa − P̂Ca)(−x− y)

]
u(y) dy.

3.4.1. Representation of the Projection Present in the Canonical Convolution. We give a representation of
P that is independent of the orthonormal basis used in its definition. We note for x ∈ Ω that

n∑
k=0

〈eD4k+1|u〉 eD4k+1(x) =
〈 n∑
k=0

eD4k+1(x) eD4k+1|u
〉
,

and for y ∈ Ω that

eD4k+1(x) eD4k+1(y) = sin
( (4k + 1)π

2
(x+ 1)

)
sin
( (4k + 1)π

2
(y + 1)

)
=

1

2

[
sin
( (4k + 1)π

2
(x− y + 1)

)
+ sin

( (4k + 1)π

2
(x+ y + 1)

)]
.

For a ∈ R, we have
n∑
k=0

sin((4k + 1)a) =

n∑
k=0

[sin(4ka) cos(a) + cos(4ka) sin(a)]

= cos(a)

n∑
k=0

sin(4ka) + sin(a)

n∑
k=0

cos(4ka). (3.21)

For n ∈ N∗, b ∈ C satisfying b 6= 2πl, l ∈ Z, we also have
n∑
k=0

sin(kb) =
1

2i

[ n∑
k=0

eikb −
n∑
k=0

e−ikb
]

=
1

2i

[ n∑
k=0

(eib)k −
n∑
k=0

(e−ib)k
]

=
− sin(b(n+ 1)) + sin(bn) + sin(b)

4 sin2(
b

2
)

(3.22)

n∑
k=0

cos(kb) =
1

2

[ n∑
k=0

eikb +

n∑
k=0

e−ikb
]

=
1

2

[ n∑
k=0

(eib)k +

n∑
k=0

(e−ib)k
]

=
− cos(b(n+ 1)) + cos(bn)− cos(b) + 1

4 sin2(
b

2
)

. (3.23)

We substitute b = 4a in (3.22) and (3.23) and plug these expressions in (3.21). For a 6= lπ/2, l ∈ Z, (3.21)
turns into the following formula

n∑
k=0

sin((4k + 1)a) =
− sin(a(4n+ 5)) + sin(a(4n+ 1)) + sin(3a) + sin(a)

4 sin2(2a)
.

For x− y, x+ y /∈ Z, let

Kn(x− y) :=
1

4 sin2(π(x− y + 1))

[
− sin

(π(4n+ 5)

2
(x− y + 1)

)
+ sin

(π(4n+ 1)

2
(x− y + 1)

)
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+ sin
(3π

2
(x− y + 1)

)
+ sin

(π
2

(x− y + 1)
)]
. (3.24)

Then, the expression of (3.21) can be simplified as

n∑
k=0

eD4k+1(x) eD4k+1(y) =
1

2
Kn(x− y) +

1

2
Kn(x+ y).

Consequently,

n∑
k=0

〈eD4k+1|u〉 eD4k+1(x) =
1

2

∫ 1

−1

Kn(x− y)u(y) dy +
1

2

∫ 1

−1

Kn(x+ y)u(y) dy.

After a change of variable in the second integral, we obtain

n∑
k=0

〈eD4k+1|u〉 eD4k+1(x) =

∫ 1

−1

Kn(x− y)
1

2
[u(y) + u(−y)] dy.

Hence, we arrive at the integral representation of P

Pu = lim
n→∞

Kn ∗
1

2
[u+ u ◦ (−idΩ)],

where Kn is given in (3.24), ∗ denotes the integral convolution on Ω, and the limit is to be performed in
L2
C(Ω).

4. Alternative Governing Operators

The main property we exploit in satisfying the BC is the evenness of the kernel function. Inspired by this
fact, we can define alternative governing operators that are structurally simpler than C∗N and C∗D that satisfy
homogeneous Neumann and Dirichlet BC, respectively. We will call these operators simple convolutions.
Employing even kernel functions, these are derived from certain combinations of convolutions that satisfy
periodic and antiperiodic BC together with even and odd input functions. Since even and odd parts of an
input function is used in the definition of simple convolution operators, here we provide their definitions.
We denote the orthogonal projections that give the even and odd parts, respectively, of a function by
Pe, Po : L2

C(Ω) → L2
C(Ω), whose definitions are

Peu(x) :=
u(x) + u(−x)

2
, Pou(x) :=

u(x)− u(−x)

2
. (4.1)

We sketch the derivation of a simple convolution that satisfies homogeneous Dirichlet BC. It is easy to
see that for any kernel function C, we have

(C ∗p u)(1) = (C ∗p u)(−1).

In addition, if C satisfies (1.2), i.e., is even, then (C ∗p u)(1) = 0 when u is odd. Likewise, for the antiperiodic
case,

(C ∗a u)(1) = −(C ∗a u)(−1),

holds for any C. Once again, using (1.2), we can easily notice that (C ∗a u)(1) = 0 when u is even. Since
homogeneous Dirichlet BC are satisfied by C ∗p Po and C ∗a Pe, this suggests that these are functions of the
classical operator AD with homogeneous Dirichlet BC. For the Neumann BC, the situation is similar. By a
change of basis, we will prove that C ∗p Pe and C ∗a Po are both functions of the classical operator AN and
hence automatically satisfy homogeneous Neumann BC. Likewise, C ∗p Po and C ∗a Pe are both functions of
the classical operator AD and hence satisfy homogeneous Dirichlet BC. Next, we present this change of basis
construction.

The PD related governing operator is given by

Lu(x) := cu(x)−
∫

Ω

χδ(x− y)u(y)dy, x ∈ Ω,
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where

χδ(x) =

{
1, |x| < δ,

0, otherwise.

Let χ̂δ,p(x) and χ̂δ,a(x) denote the periodic and antiperiodic extensions of χ̂δ(x), x ∈ (−1, 1), respectively,
to x ∈ (−2, 2). It was shown in [3] that the operator

MNu(x) := cu(x)−
∫

Ω

χ̂δ,p(x− y)Peu(y)dy −
∫

Ω

χ̂δ,a(x− y)Pou(y)dy,

is equal to the operator L in the bulk, i.e., x ∈ (−1 + δ, 1− δ). Furthermore, MN satisfies the homogeneous
Neumann BC. In summary, when C(x) = χδ(x), we have

MN = (c− C ∗p Pe − C ∗a Po). (4.2)

In order to carry out numerical experiments for the Neumann BC, we utilize the operatorMN as the governing
operator; see Table 5.1.

In a similar fashion, it was shown in [3] that the operator

MDu(x) := cu(x)−
∫

Ω

χ̂δ,a(x− y)Peu(y)dy −
∫

Ω

χ̂δ,p(x− y)Pou(y)dy,

is equal to the operator L in the bulk. Furthermore, L satisfies the homogeneous Dirichlet BC. For C(x) =
χδ(x), we have

MD = (c− C ∗a Pe − C ∗p Po). (4.3)

In order to carry out numerical experiments for the Dirichlet BC, we utilize the operatorMD as the governing
operator; see Table 5.1. For other related governing operators, see [2].

4.1. Simple Convolution Operators Satisfying Neumann Boundary Conditions. We prove that
C ∗p Pe and C ∗a Po are functions of AN. Since we use a change of basis, we recall that the corresponding
eigenfunctions for k ∈ Z are

e
p
k(x) =

1√
2
eiπkx, eak(x) =

1√
2
eiπ
(
k+ 1

2

)
x.

We focus on the operator C ∗p Pe. First, we note for even u and k ∈ N∗ that

〈epk|C〉 = 〈ep−k|C〉 =
1√
2

∫ 1

−1

cos(πky)C(y) dy,

〈epk|u〉 = 〈ep−k|u〉 =
(−1)k√

2
〈eN2k|u〉 .

As a consequence, for k ∈ N∗

〈epk|C〉 〈e
p
k|u〉 e

p
k(x) + 〈ep−k|C〉 〈e

p
−k|u〉 e

p
−k(x) =

√
2 (−1)k 〈epk|C〉 〈e

p
k|u〉 e

N
2k(x)

= 〈epk|C〉 〈e
N
2k|u〉 eN2k(x).

Hence,

C ∗p u =
∑
k∈Z
〈epk|C〉 〈e

p
k|u〉 e

p
k =

∞∑
k=0

〈epk|C〉 〈e
N
2k|u〉 eN2k =

∞∑
k=0

f1(k2) 〈eNk|u〉 eNk,

where f1 ∈ B(σ(AN),C) is defined by

f1(k2) :=

{
0 if k ∈ N is odd,

〈epk/2|C〉 if k ∈ N is even.
(4.4)

Finally, we see that C ∗p Pe is a function of AN, more precisely

C ∗p Pe = f1(AN).
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We now prove that C ∗a Po is also a function of AN. First, we note for odd u and k ∈ N that

〈eak|C〉 = 〈ea−k−1|C〉 =
1√
2

∫ 1

−1

cos

[
π
(
k +

1

2

)
y

]
C(y) dy,

〈eak|u〉 = −〈ea−k−1|u〉 =
(−1)k i√

2
〈eN2k+1|u〉 .

As a consequence,

〈eak|C〉 〈eak|u〉 eak(x) + 〈ea−k−1|C〉 〈ea−k−1|u〉 ea−k−1(x) = 〈eak|C〉 〈eN2k+1|u〉 eN2k+1(x).

Hence,

C ∗a u =
∑
k∈Z
〈eak|C〉 〈eak|u〉 eak =

∞∑
k=0

〈eak|C〉 〈eN2k+1|u〉 eN2k+1 =

∞∑
k=0

f2(k2) 〈eNk|u〉 eNk,

where f2 ∈ B(σ(AN),C) is defined by

f2(k2) :=

{
〈ea(k−1)/2|C〉 if k ∈ N∗ is odd,

0 if k ∈ N∗ is even.
(4.5)

Finally, we see that C ∗a Po is a function of AN, more precisely

C ∗a Po = f2(AN).

4.2. Simple Convolution Operators Satisfying Dirichlet Boundary Conditions. We prove that
C ∗p Po and C ∗a Pe are functions of AD. We focus on the C ∗p Po operator. First, we note for odd u and
k ∈ N∗ that

〈epk|C〉 = 〈ep−k|C〉 =
1√
2

∫ 1

−1

cos(πky)C(y) dy ,

〈epk|u〉 = −〈ep−k|u〉 =
(−1)k+1i√

2
〈eD2k|u〉 .

As a consequence, for k ∈ N∗

〈epk|C〉 〈e
p
k|u〉 e

p
k(x) + 〈ep−k|C〉 〈e

p
−k|u〉 e

p
−k(x) = i

√
2 (−1)k 〈epk|C〉 〈e

p
k|u〉 e

D
2k(x)

= 〈epk|C〉 〈e
D
2k|u〉 eD2k(x).

Hence,

C ∗p u =
∑
k∈Z
〈epk|C〉 〈e

p
k|u〉 e

p
k =

∞∑
k=1

〈epk|C〉 〈e
D
2k|u〉 eD2k =

∞∑
k=1

f1|N∗ (k2) 〈eDk|u〉 eDk,

where f1|N∗ is the restriction of f1 defined in (4.4) to N∗. Finally, we see that C ∗p Po is a function of AD,
more precisely

C ∗p Po = f1(AD).

We now prove that C ∗a Pe is also a function of AD. First, we note for even u and k ∈ N that

〈eak|C〉 = 〈ea−k−1|C〉 =
(−1)k√

2
〈eD2k+1|C〉 , 〈eak|u〉 = 〈ea−k−1|u〉 =

(−1)k√
2
〈eD2k+1|u〉 .

As a consequence,

〈eak|C〉 〈eak|u〉 eak(x) + 〈ea−k−1|C〉 〈ea−k−1|u〉 ea−k−1(x) =
√

2 (−1)k 〈eak|C〉 〈eak|u〉 eD2k+1(x)

= 〈eak|C〉 〈eD2k+1|u〉 eD2k+1(x).

Hence,

C ∗a u =
∑
k∈Z
〈eak|C〉 〈eak|u〉 eak =

∞∑
k=0

〈eak|C〉 〈eD2k+1|u〉 eD2k+1 =

∞∑
k=1

f2(k2) 〈eDk|u〉 eDk,



16 B. AKSOYLU, H.R. BEYER, AND F. CELIKER

where f2 is defined in (4.5). Finally, we see that C ∗a Pe is a function of AD, more precisely

C ∗a Pe = f2(AD).

5. Numerical Experiments

Recalling the governing equation (1.3), we numerically solve the following nonlocal equation

utt(x, t) + fBC(ABC)u(x, t) = b(x, t), (x, t) ∈ Ω× J, (5.1a)

u(x, 0) = u0(x), x ∈ Ω, (5.1b)

ut(x, 0) = v0(x) x ∈ Ω, (5.1c)

where J = (0, T ) is some finite time interval, Ω = (−1, 1), b is a given source term, and u0 and v0 are
given initial conditions. The choice of the subscript BC ∈ {p, a, N, D} is determined by the BC that are to
be satisfied at the boundary of the physical domain (−1, 1). This, in turn, determines the function of the
classical operator fBC(ABC) as described in Table 5.1 where we have defined

c :=
1√
2

∫ 1

−1

C(y) dy. (5.2)

Since integral representation of abstract convolutions C∗BC is more convenient for implementation, these
representations are given for BC = p and BC = a in (3.3) and (3.5), respectively. Furthermore, derived from
periodic and antiperiodic cases, the governing operators for the Neumann and Dirichlet BC are given in (4.2)
and (4.3), respectively. All governing operators are listed in Table 5.1.

In our theoretical development, note that we have considered homogeneous equations so far because the
construction is based exclusively on the operator, not the right hand side function. However, as can be
seen from (5.1a), we also consider inhomogeneous equations in this section. For details of the theoretical
construction for the inhomogeneous equation, see the foundation paper [1].

5.1. Discretization in Space. To approximate the solution of (5.1) we begin with discretizing the domain
Ω into N subintervals by defining Ωh = {K1,K2, . . . ,KN} where Ki = (xi−1, xi) with −1 = x0 < x1 < · · · <
xN−1 < xN = 1. We let hi = |Ki| = xi − xi−1 for i = 1, . . . , N . Given a polynomial degree ` ≥ 0, we wish
to approximate the solution u(x, t) of (5.1) for a fixed t in the finite element space

Vh = {v ∈ L2(Ω) : v|K ∈ P`(K) for all K ∈ Ωh}

where P`(K) is the space of polynomials of degree at most ` on K.

We define the L2-inner product on an element K ∈ Ωh as

(u, v)K =

∫
K

u(x)v(x) dx and set (u, v)Ωh
=
∑
K∈Ωh

(u, v)K .

BC fBC(ABC)u(x, t) BC enforced

p (c− C∗p)u(x, t) u(−1, t) = u(1, t), ux(−1, t) = ux(1, t)

a (c− C∗a)u(x, t) u(−1, t) = −u(1, t), ux(−1, t) = −ux(1, t)

N
√

2 [(c− C ∗p Pe − C ∗a Po)]u(x, t) ux(−1, t) = ux(1, t) = 0

D
√

2 [(c− C ∗p Po − C ∗a Pe)]u(x, t) u(−1, t) = u(1, t) = 0

Table 5.1. The choice of nonlocal operators based on the boundary conditions enforced.
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For approximation of (5.1), we use a Galerkin projection as used in [8, 9] and consider the following (semidis-
crete) approximation: Find uh : J × Vh → R such that

(uhtt, v)Ωh
+ (fBC(ABC)u

h, v)Ωh
= (b, v)Ωh

for all v ∈ Vh, (5.3a)

uh|t=0 = Πhu0, (5.3b)

uht |t=0 = Πhv0. (5.3c)

Here, Πh denotes the L2-projection onto Vh.

5.2. Discretization in Time. The discretization of (5.1) by the Galerkin method (5.3) leads to the second-
order system of ordinary differential equations

Mü(t) + Auh(t) = bh(t), t ∈ J, (5.4)

with initial conditions
Muh(0) = uh0 , Mu̇h = vh0 . (5.5)

Here, M denotes the mass matrix and A denotes the stiffness matrix. To discretize (5.4)-(5.5) in time, we
employ the Newmark time-stepping scheme as described in [21].

Let k denote the time step and set tn = n · k for n = 1, 2, . . . . The Newmark scheme we employ consists
of finding approximations {uhn}n to uh(tn) such that

Muh1 =
(
M− 1

2
k2A

)
uh0 + kMvh0 +

1

2
k2bh0 ,

Muhn+1 =
(
2M− k2A

)
uhn −Muhn−1 + k2bhn,

for n = 1, 2, . . . , Nt − 1 where Ntk = T , and bn = b(tn). Although there is a more general version of
the Newmark time-stepping scheme, we made this particular choice due to the fact that it is second-order
accurate and is explicit in the sense that at each time step we only have to solve a linear system with a
coefficient matrix M that is block diagonal. Hence, M can be inverted at a very low computational cost. For
other Newmark schemes the coefficient matrix of the linear system would be M+k2βA for some β > 0 which
needs to be inverted at each time step. For a detailed discussion of more general Newmark time integration
schemes we refer to [21].

5.3. Implementation Details. Let us describe a few details regarding the computation of the stiffness
matrix A. Let K ∈ Ωh and let {φKj : j = 1, . . . , ` + 1} be a basis for P`(K). To fix ideas, let us consider
the case BC = p so that

fBC(ABC)u(x, t) = (c− C∗p)u(x, t).

The remaining cases BC = a, N, D are similar.

First of all, we need to compute the constant c in (5.2). In the cases where C is an elementary function
such as a (piecewise) polynomial, the exact value of this constant can be computed by direct integration.
However, in the general case, we have to resort to numerical quadrature. We simply compute

c =
1√
2

∑
K∈Ωh

∫
K

C(x)dx

where the integral on each element K ∈ Ωh is approximated by a quadrature rule. In this case, if C happens
to have discontinuities or kinks in Ω, in order to obtain an accurate approximation to c, we have to ensure
that the nodes of the discrete domain Ωh are aligned with these discontinuities.

The matrix A is of size N(`+1)×N(`+1) and has a block structure. Each block-row of size (`+1)×N(`+1)
corresponding to an element K ∈ Ωh is determined by the equations

(fp(Ap)u
h, φKi )K = (b, φKi )K , for i = 1, 2, . . . , `+ 1.

Inserting the definition of fp(Ap), we get

(fp(Ap)u
h, φKi )K = ((c− C∗p)uh, φKi )K

= c(uh, φKi )K − (C ∗p uh, φKi )K .
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(a) Solution u with initial data u(x, 0) = u0,disc(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(b) Solution u with initial data u(x, 0) = u0,disc(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(c) The same solution from Fig. 5.1(a) from a

boundary point of view.

(d) The same solution from Fig. 5.1(b) from a

boundary point of view.

(e) Contour plot of u from Fig. 5.1(a). (f) Contour plot of u from Fig. 5.1(b).

Figure 5.1. Solution to the nonlocal wave equation with periodic (left) and antiperiodic
(right) boundary conditions, discontinuous initial displacement, and vanishing initial veloc-
ity.
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(a) Solution u with initial data u(x, 0) = u0,disc(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(b) Solution u with initial data u(x, 0) = u0,disc(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(c) The same solution from Fig. 5.2(a) from a

boundary point of view.

(d) The same solution from Fig. 5.2(b) from a

boundary point of view.

(e) Contour plot of u from Fig. 5.2(a). (f) Contour plot of u from Fig. 5.2(b).

Figure 5.2. Solution to the nonlocal wave equation with Neumann (left) and Dirichlet
(right) boundary conditions, discontinuous initial displacement, and vanishing initial veloc-
ity.
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(a) Solution u with initial data u(x, 0) = u0,cont(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(b) Solution u with initial data u(x, 0) = u0,disc(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(c) The same solution from Fig. 5.3(a) from a

boundary point of view.

(d) The same solution from Fig. 5.3(b) from a

boundary point of view.

(e) Contour plot of u from Fig. 5.3(a). (f) Contour plot of u from Fig. 5.3(b).

Figure 5.3. Solution to the nonlocal wave equation with periodic (left) and antiperiodic
(right) boundary conditions, continuous initial displacement, and vanishing initial velocity.
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(a) Solution u with initial data u(x, 0) = u0,disc(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(b) Solution u with initial data u(x, 0) = u0,cont(x)

and ut(x, 0) = 0, x ∈ (−1, 1). Initial data view.

(c) The same solution from Fig. 5.4(a) from a

boundary point of view.

(d) The same solution from Fig. 5.4(b) from a

boundary point of view.

(e) Contour plot of u from Fig. 5.4(a). (f) Contour plot of u from Fig. 5.4(b).

Figure 5.4. Solution to the nonlocal wave equation with Neumann (left) and Dirichlet
(right) boundary conditions, continuous initial displacement, and vanishing initial velocity.
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(a) Solution u to the classical (local) wave equa-

tion with initial data u(x, 0) = u0,cont(x) defined
in (5.7) and ut(x, 0) = 0.

(b) Solution u to the classical (local) wave equa-

tion with initial data u(x, 0) = u0,cont(x) defined
in (5.7) and ut(x, 0) = 0.

(c) Solution u to the classical (local) wave equa-
tion with initial data u(x, 0) = 0 and ut(x, 0) =

u0,cont(x) defined in (5.7).

(d) Solution u to the classical (local) wave equa-
tion with initial data u(x, 0) = 0 and ut(x, 0) =

u0,cont(x) defined in (5.7).

Figure 5.5. Solution to the classical wave equation with Neumann ((a) and (c)) and Dirich-
let ((b) and (d)) boundary conditions with vanishing initial velocity ((a) and (b)) and van-
ishing initial displacement ((c) and (d)).

The computation of the first term is standard, but we would like elaborate on a few details regarding
the computation of the second term. At any fixed time t ∈ J and for a fixed element T ∈ Ωh, we have the
restriction, uh,T , of uh on T has the expansion

uh,T (x, t) =

`+1∑
j=1

uTj (t)φTj (x).
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Then, since

C ∗p uh(x, t) =

∫ 1

−1

Ĉp(x− y)uh(y, t) dy

=
∑
T∈Ωh

`+1∑
j=1

uTj (t)

∫
T

Ĉp(x− y)φTj (y) dy,

we have

(C ∗p uh, φKi )K =
∑
T∈Ωh

`+1∑
j=1

uTj (t)

∫
K

RTj (x)φKi (x) dx (5.6)

where

RTj (x) :=

∫
T

Ĉp(x− y)φTj (y) dy.

Thus, we need to compute pointwise values of RTj which will be achieved through numerical quadrature. Note
that the micromodulus function C may have points of discontinuities or kinks (or higher order derivatives of
C may not be continuous) in Ω. Hence, when computing RTj (x), we need to take these points into account,
for example, when using Gaussian quadrature which requires the smoothness of the integrand for optimal

order accuracy. Furthermore, even if C is arbitrarily smooth in Ω, its extension Ĉp may not be smooth in

[−2, 2]. Since the integrand involves Ĉp(x − y) which is a translation of Ĉp(−y) = Ĉp(y) by x units to the

left, we always have to account for possible singularities of Ĉp(y) at the end points, {−1, 1}, of the domain

Ω. Suppose ys ∈ T is such that Ĉp(x− ys) has a singularity in K. Then the integral defining RTj (x) has to
be computed by writing T = T1 ∪ T2 where T = (xL, xR), T1 = (xL, ys) and T2 = (ys, xR), and applying
numerical quadrature on both subintervals. A similar treatment is needed when computing the integral∫
K
RTj (x)φKj (x) dx.

Due to the nonlocal nature of the problem, the stiffness matrix A is not necessarily sparse. This can be
seen from (5.6) by observing that RTj does not necessarily vanish on the element K for T 6= K. The sparsity
structure of A is determined by the support of the micromodulus function C. More explicitly, the wider
the support of C, the less sparse A is. Symmetry and positive definiteness of the stiffness matrix are the
consequences of the self-adjointness and positivity of the governing operator, respectively; see [1]. For the
case of periodic and Neumann BC, the stiffness matrix becomes positive semidefinite and these systems can
be solved by using numerical methods described in [12, 20]. Finally, we would like to point out that the
assembly of the stiffness matrix as well as the mass matrix is independent of the time step and is performed
only once.

5.4. Approximations to Explicitly Known Exact Solutions. In order to ascertain the convergence
performance of the scheme described above, we display some numerical results corresponding to explicitly
known exact solutions. We solve one example corresponding to each BC type. We take the exact solution
corresponding to each BC as given in Table 5.2 and compute the corresponding right-hand side function
b(x, t). Note that, since the operator fBC(ABC) is different for each BC, the corresponding source term b(x, t)
also differs. We take the micromodulus function C to be the unit box on Ω, namely,

C(x) =

{
1, x ∈ [−1/2, 1/2],

0, otherwise.

For each case, we compute the exact solution until the final time T = 20 and compute the relative L2-error∥∥(u− uh)(·, T )
∥∥

0
/ ‖u(·, T )‖0. We first compute an approximate solution with a uniform coarse mesh with

N = 23 elements and then refine the mesh by subdividing each element into two elements of equal size. In
each case, as the time step of the Newmark scheme we take ∆t = 0.005 so that the explicit Newmark time
integration scheme is stable. In all of our examples, we found out that taking ∆t so that ∆t < h/10 is
sufficient for stability. Note that since the Newmark scheme is second order accurate in time, and all of the
exact solutions in Table 5.2 is of the form u(x, t) = T (t)X(x) with T (t) = t2, a second order polynomial, it
is guaranteed that the dominant error is that in the space variable.
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We display our numerical results in Table 5.3. Therein, the column labeled ` indicates the polynomial
degree we used to compute uh, and the column labeled “mesh” denotes the mesh we used to compute the
relative error displayed in the corresponding row, more explicitly, mesh= i means we used a uniform mesh
with N = 2i elements. In the column labeled “order” we display an approximate order of convergence as
follows. If ei denotes the relative error with mesh= i, then we display the quantity

ri+1 = − 1

log 2
log
(ei+1

ei

)
at the row corresponding to mesh= i+ 1. The results displayed in Table 5.3 suggest an error estimate of the
form ∥∥(u− uh)(·, T )

∥∥
0

‖u(·, T )‖0
≤ Dh`+1

for some constant D independent of u and h, that is, the method converges optimally with respect to the
mesh size.

5.5. Approximations to Unknown Solutions. Here we display some numerical results in which we solve
(5.3) with b = 0 on Ω× J . In this case, we do not have an explicit representation of the solution and merely
rely on numerical computing. We consider two initial displacement functions

BC u(x, t)

p t2(sin(πx) + cos(πx))

a t2(x4 − 1)

N t2((x2 − 1)2 − 8/15)

D t2(1 + sin(πx) + cos(πx))

Table 5.2. Known exact solutions used in numerical experiments.

periodic antiperiodic Neumann Dirichlet

` mesh error order error order error order error order

3 2.32E-01 – 1.53E-01 – 2.34E-01 – 1.83E-01 –
4 1.14E-01 1.02 6.88E-02 1.15 1.15E-01 1.03 8.35E-02 1.13

0 5 5.68E-02 1.01 3.29E-02 1.06 5.72E-02 1.01 4.05E-02 1.04
6 2.84E-02 1.00 1.62E-02 1.02 2.85E-02 1.00 2.01E-02 1.01
7 1.42E-02 1.00 8.10E-03 1.00 1.43E-02 1.00 1.00E-02 1.00

3 2.28E-02 – 1.46E-02 – 2.30E-02 – 1.62E-02 –
4 5.74E-03 1.99 3.69E-03 1.99 5.91E-03 1.96 4.06E-03 1.99

1 5 1.44E-03 2.00 9.25E-04 2.00 1.49E-03 1.99 1.02E-03 2.00
6 3.59E-04 2.00 2.32E-04 2.00 3.73E-04 2.00 2.54E-04 2.00
7 8.98E-05 2.00 5.79E-05 2.00 9.32E-05 2.00 6.35E-05 2.00

3 1.52E-03 – 8.03E-04 – 2.05E-03 – 1.07E-03 –
4 1.90E-04 2.99 1.01E-04 2.99 2.47E-04 3.05 1.35E-04 2.99

2 5 2.38E-05 3.00 1.26E-05 3.00 3.06E-05 3.01 1.69E-05 3.00
6 2.98E-06 3.00 1.58E-06 3.00 3.82E-06 3.00 2.11E-06 3.00
7 3.73E-07 3.00 1.97E-07 3.00 4.77E-07 3.00 2.63E-07 3.00

3 7.51E-05 – 2.21E-05 – 5.03E-04 – 5.31E-05 –
3 4 4.71E-06 3.99 1.38E-06 4.00 3.16E-05 3.99 3.33E-06 3.99

5 2.95E-07 4.00 8.62E-08 4.00 1.98E-06 4.00 2.08E-07 4.00
6 1.84E-08 4.00 5.39E-09 4.00 1.25E-07 3.99 1.30E-08 4.00

Table 5.3. History of convergence with known exact solutions for all BC types.
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Figure 5.6. Micromodulus function C(x) (left). Discontinuous (middle) and continuous
(right) initial displacement functions u0,disc(x) and u0,cont(x), respectively.

u0,disc (x) =

{
3/2, x ∈ [−1/16, 1/16],

0, otherwise,

and

u0,cont(x) =


0, x ∈ (−1,−1/4),

(1 + 4x)3(96x2 − 12x+ 1), x ∈ [−1/4, 0),

(1− 4x)3(96x2 + 12x+ 1), x ∈ [0, 1/4],

0, x ∈ (1/4, 1).

(5.7)

In all cases, the initial velocity v0(x) = 0 for all x ∈ Ω. The micromodulus function is taken to be

C(x) =

{
1, x ∈ [−1/8, 1/8],

0, otherwise.

These functions are displayed in Fig. 5.6. We use the polynomial degree ` = 2 on a mesh with N = 64 and
N = 128 element for continuous and discontinuous initial data, respectively. For each BC case, we depict
the associated wave propagation; see Fig. 5.1, 5.2, 5.3, and 5.4.

For t ∈ R, we have proved that the solution is discontinuous if and only if the initial data is discontinuous;
see the foundation paper [1]. Furthermore, the position of discontinuity is determined by the initial data
and should remain stationary. Since we use vanishing initial velocity, the explicit solution expression is given
by [1]

u(x, t) = cos
(
t
√
c
)
u(x, 0) + usmth(x, t),

where usmth(·, t) is a continuous function for t ∈ R. As seen in Fig. 5.1 and 5.2, discontinuities of the initial
data remain stationary at x = −1/16 and x = 1/16. In addition, we observe that away from discontinuities,
the solution is smooth, verifying the smoothness of usmth(·, t).

We also numerically verify that the prescribed BC are satisfied for all t ∈ [0, 50] and t ∈ [0, 100] for
discontinuous and continuous initial data, respectively. For instance, it is easy to see that homogeneous
Dirichlet BC are satisfied in Fig. 5.2 and 5.4. Furthermore, the governing operator preserves the reflection
symmetry. In other words, since initial data (both u0,disc and u0,cont) are symmetric with respect to x = 0,
the displacement is symmetric with respect to x = 0, which can easily be observed by the symmetry in
contour plots; for discontinuous initial data see Fig. 5.1(e), 5.1(f), 5.2(e), and 5.2(f) and for continuous
initial data, see 5.3(e), 5.3(f), 5.4(e), and 5.4(f).

We also report solutions of classical (local) and nonlocal equations with continuous initial data u0,cont(x)
given in (5.7). First of all, wave separation behavior in the bounded domain is similar to that from the
unbounded domain case as reported in [11]. There are two groups of propagating waves, one group towards
the left and another towards the right boundary. In the nonlocal case, we observe oscillatory recurrent
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wave separation and oscillations are located at the center of the initial pulse. Hence, the wave patterns are
symmetric with respect to x = 0; see Fig. 5.3 and 5.4.

As far as the boundary behavior goes, in nonlocal problems, we observe a similar wave reflection pattern
from the boundary as in classical problems. In the classical case, we see that the Neumann and the Dirichlet
BC create reflections of same and opposite signs, respectively; for the Neumann BC, see Fig. 5.5(a) and
5.5(c) and for the Dirichlet BC, see Fig. 5.5(b) and 5.5(d). A parallel behavior is observed for the nonlocal
Neumann and Dirichlet cases; see Fig. 5.4.

6. Conclusion

The main goal in this paper was to apply the concept of abstract convolution operator to nonlocal problems
such as the nonlocal wave equation given in (1.3) and carry out a numerical study of the resulting operators.
The choice of the Hilbert basis provides a flexibility in the construction of the abstract convolution operator.
We made this construction concrete by choosing the basis to be the eigenbasis of the classical operator with
prominent local BC. This is precisely the mechanism we used to incorporate local BC into nonlocal problems.
The theoretical aspects and foundations of this construction process are discussed in our foundation paper
[1].

In the case of periodic and antiperiodic BC, integral representations of the abstract convolutions are
relatively direct to establish. Such representations can also be obtained for the case of Neumann BC, but
with considerably more effort exploiting half-wave symmetry. For Dirichlet BC, this integral representation
involves an orthogonal projection of the micromodulus function onto a closed subspace defined in terms of
the eigenbasis. We give an integral representation of this projection which does not depend on the eigenbasis.
Applying convolutions of the periodic and antiperiodic cases, we constructed additional integral convolutions,
what we call simple convolutions, satisfying Neumann and Dirichlet BC.

Our foundation paper [1] and this paper together present a unique way of combining the powers of
abstract operator theory with numerical computing. The abstractness of the methods used in the foundation
paper allows generalization to other nonlocal theories. To substantiate the uniqueness of our treatment, we
provided a comprehensive numerical study of the solutions of the nonlocal wave equation. We accomplished
to demonstrate two crucial goals: For t ∈ R and each BC considered, discontinuities of the initial data remain
stationary and BC are satisfied by the solution. In the depicted solutions, for discretization, we employed
a weak formulation based on a Galerkin projection and used piecewise polynomials on each element which
allows discontinuities of the approximate solution at the element borders. We carried out a history of
convergence study to ascertain the convergence behavior of the method with respect to the polynomial order
and observed optimal convergence.

Our ongoing work aims to extend the novel operators to vector valued problems [4] which will allow
the extension of PD to applications that require local BC. Furthermore, we hope that our novel approach
potentially will avoid altogether the surface effects seen in PD. We conclude that we added valuable numerical
tools to the arsenal of methods to treat nonlocal problems and compute their solutions.
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