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Abstract. In this article, we provide a variational theory for nonlocal problems where nonlocality
arises due to interaction in a given horizon. With this theory, we prove well-posedness results for
the weak formulation of nonlocal boundary value problems with Dirichlet, Neumann, and mixed
boundary conditions for a class of kernel functions. The motivating application for nonlocal bound-
ary value problems is the scalar stationary peridynamics equation of motion. The well-posedness
results support practical kernel functions used in the peridynamics setting.

We also prove a spectral equivalence estimate which leads to a mesh size independent upper
bound for the condition number of an underlying discretized operator. This is a fundamental con-
ditioning result that would guide preconditioner construction for nonlocal problems. The estimate
is a consequence of a nonlocal Poincaré-type inequality that reveals a horizon size quantification.
We provide an example that establishes the sharpness of the upper bound in the spectral equiva-
lence.

Keywords: Nonlocal operators, nonlocal boundary value problems, well-posedness, nonlocal Poincaré
inequality, peridynamics, condition number, preconditioning.

1. Introduction

Nonlocal problems have become a critical part of modeling and simulation of complex phenomena
that span vastly different length scales. Examples include evolution equations for species population
densities [8], image processing [14, 24], porous media flow [9, 10, 22], and turbulence [4]. The book
by Eringen [12] contains abundant applications which include fracture of solids, stress fields at
dislocation cores and crack tips, and singularities present at concentrated loads (forces, couples,
heat, etc.). Consequently, nonlocal models have become increasingly useful for multiscale modeling.

Our interest in nonlocal problems has been motivated by peridynamics which is a nonlocal
reformulation of continuum mechanics developed by Silling [21]. Peridynamics employs an integral
operator as opposed to differential operators to formulate the equations of motion, by allowing an
interaction between points that are separated by a finite distance. Since there are no assumptions
made on the regularity of displacement or force fields, the theory is suitable to study phenomena
with discontinuities such fracture and fragmentation; see [21, 20]. The simplified governing equation
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in peridynamics theory has the form [21, eqn. (56)]:

utt(x, t) = L(u(x, t))− b(x), (1.1)

where the linear nonlocal operator L is defined by:

L(u)(x) := −
�

Ω∪BΩ
C(x,x′)

(
u(x′)− u(x)

)
dx′. (1.2)

Here Ω ⊂ Rd is a bounded domain with a nonlocal boundary BΩ defined to be a fixed subset of the
complement of Ω in Rd. The measurable vector valued function u may represent a displacement
field and is not assumed to have any a priori regularity. The kernel function C encodes physical
material properties. Nonlocality arises due to the fact that points x′ 6= x can interact with x. This
leads us to define the notion of horizon of x, Hx, as:

Hx := {x′ : ‖x′ − x‖ ≤ δ}, (1.3)

where δ > 0 denotes the horizon size. We note that the nonlocal boundary is a d-dimensional region
unlike its (d − 1)-dimensional counterpart in local problems. For our purpose we take BΩ to be
the region surrounding Ω with unit thickness. That is, BΩ := {x ∈ Rd \ Ω : dist(x, ∂Ω) ≤ 1 }, as
depicted in Figure 1.1. We define the nonlocal closure of Ω by Ω := Ω ∪ BΩ.

 

Ω 

BΩ 

Figure 1.1. Typical domain for (1.4). u is prescribed in BΩ, and we solve for u in Ω.

In this article, for certain kernel functions C, we study scalar stationary nonlocal problems. An
instance of such problems is the scalar peridynamics equilibrium boundary value problem whose
strong formulation related to the nonlocal operator in (1.2) is given by:

L(u)(x) = b(x), x ∈ Ω, (1.4)

where u(x) is prescribed for x ∈ BΩ and b is a given function defined on Ω. We aim to study the
nonlocal problem (1.4) in a variational framework.

The first goal of this article is to prove well-posedness of the underlying variational form of
(1.4). Utilizing a function space V ⊂ L2(Ω) that reflects the prescribed boundary condition, the
variational formulation of (1.4) is the following: Given b(x) ∈ L2(Ω), find u(x) ∈ V such that

a(u, v) = (b, v) ∀v ∈ V, (1.5)
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where

a(u, v) := −
�

Ω

{�
Ω

C(x,x′) [u(x′)− u(x)] dx′
}

v(x) dx′ dx (1.6)

and (·, ·) is the standard L2 inner product. We provide a collection of well-posedness results. In
particular, we prove that (1.5) has a unique solution for purely Dirichlet, purely Neumann, and
mixed nonlocal boundary conditions with continuous dependence upon the data, b(x). For the pure
Dirichlet problem, we provide details to the already known well-posedness result given in [15]. We
utilize the connection provided by Brézis [7, p. 704] to establish the well-posedness of problems
with purely Neumann and mixed boundary conditions.

The second goal is to complement the conditioning analysis given in the companion article [1].
In [1], the first author constructed a nonlocal domain decomposition framework to enable the usage
of scalable solvers, in particular, iterative substructuring [6, 11, 13, 17, 16, 19], for the numerical
solution of the boundary value problem (1.5). Condition number plays a crucial role in determining
the effectiveness of an iterative method. Therefore, it is paramount to quantify the conditioning
of the underlying discretized system by parameters such as the horizon size. We investigate the
impact of the horizon size δ on the conditioning of the underlying operators. For that, we set C to
be the canonical kernel function, C(x,x′) = χδ(|x − x′|), whose only role is the representation of
the horizon in (1.3) by a characteristic function. Namely,

χδ(|x− x′|) :=
{

1, |x− x′| ≤ δ
0, otherwise. (1.7)

We prove the following spectral equivalence (with sufficiently small δ for the lower bound) for
suitable function spaces V reflecting the underlying boundary conditions:

λ(Ω) δd+2‖u‖2

L2(Ω)
≤ a(u, u) ≤ λ δd‖u‖2

L2(Ω)
, u ∈ V. (1.8)

The δ-quantification for both the lower and upper bounds in (1.8) is vital for the characterization
of the condition number in terms of δ. The spectral equivalence (1.8) leads to the remarkable result
that the condition number of the underlying stiffness matrix K can be bounded independently from
the mesh size:

κ(K) . δ−2.

The main ingredient leading to the the δ-quantification is a nonlocal characterization of Sobolev
spaces introduced by Bourgain, Brézis, and Mironescu [5]. We also utilize related results by Ponce
[18] especially for the δ-quantification of the lower bound in (1.8). This nonlocal characterization of
Sobolev spaces has been used for solving variational problems arising in image diffusion applications;
see [3] and the references therein.

The remainder of the article is structured as follows. In Section 2, we construct the variational
framework and prove the well-posedness of the boundary value problem with pure Dirichlet bound-
ary value for general kernel functions that are practical in the peridynamics setting. In Section 3,
we present the well-posedness proof for mixed and pure Neumann boundary conditions. In section
4, we give the δ-quantification for the spectral equivalence and establish the sharpness of the upper
bound of (1.8) in 1D. In Section 5, we provide conclusions.
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2. Variational problem

2.1. Statement of the problem. We assume that the kernel function is radial, i.e., C(x,x′) =
C(|x− x′|), where C(r) is a nonnegative and locally integrable function. In addition, we require

C(r) > 0 on (0, δ), (2.1)

for some δ > 0. The condition (2.1) will be used in establishing the coercivity of the bilinear form
for the Dirichlet case; see Lemma 2.4.

By abusing notation, we denote all forms of the kernel function (C(x,x′), C(|x−x′|), C(r)) simply
by C. Observe that the following identity trivially holds

C(|x− x′|) [u(x′)− u(x)] = −C(|x′ − x|) [u(x)− u(x′)]. (2.2)

for any scalar function u defined on Ω. Physically equation (2.2) corresponds to Newton’s third
law. Using the antisymmetric property (2.2) and iterating the double integral, the bilinear form
a(u, v) in (1.6) can be equivalently written as follows:

a(u, v) =
1
2

�
Ω

�
Ω

C(|x− x′|) [u(x′)− u(x)] [v(x′)− v(x)] dx′ dx. (2.3)

We will use the above form of the bilinear form throughout this article. The linear nonlocal
variational problem is defined as follows: Given b ∈ L2(Ω), find u ∈ V such that

a(u, v) = (b, v) v ∈ V. (2.4)

We will consider all types of boundary conditions and prove existence of a unique solution to
(2.4) that depend continuously upon the data. The generic function space V is taken to be a
subspace of L2(Ω) and is specified with respect to the type of boundary condition imposed. The
function spaces of interest are as follows:

(1) Pure Dirichlet boundary condition:

VD := {v ∈ L2(Ω) : v = 0 on BΩ}.

Nonzero Dirichlet data can be reduced to this case following standard arguments.
(2) Mixed boundary condition:

VM := {v ∈ L2(Ω) : v = 0 on BΩe}.

The set BΩe refers to the portion of the boundary where a Dirichlet boundary condition is
imposed. We denote the complement BΩ \BΩe by BΩn. For this case we require that both
BΩe and BΩn are open domains with positive measure volume.

(3) Pure Neumann boundary condition:

VN := {v ∈ L2(Ω) :
�

Ω
v dx = 0}.
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We remark that to use standard results like the Riesz representation theorem, V needs to be
a Hilbert space, which especially ensures the completeness property. This property is guaranteed
due to the fact that V is a closed subspace of the Hilbert space L2(Ω). Indeed, V is closed for all
types of boundary conditions. In the case of VN , any strongly converging sequence also converges
weakly. That means any converging sequence of functions with the same average will converge to
a function with that average. In the cases of VM and VD, closedness follows from the fact that a
strongly converging sequence has a subsequence that converges pointwise.

We also note that for the class of kernels considered in this article, (2.4) is the weak form of the
Euler-Lagrange equation for the minimization problem:

min
u∈V

E(u), (2.5)

where E(u) := 1
2a(u, u) − (b, u). A minimizer for problem (2.5) exists. Indeed, the function space

V is weakly closed as it is a closed subspace of L2(Ω) and as it will be shown, a(·, ·) is a symmetric,
coercive and bounded bilinear form on V . This implies that a(u, u) defines a norm on V and that
E(u) is weakly lower semicontinuous. Then the existence of a minimizer follows from the direct
method of calculus of variations, see of [23, Thm 1.2]. See also [15, 21] for related results.

2.2. Well-posedness of the linear nonlocal variational problem: Dirichlet case. Well-
posedness of pure Dirichlet boundary value problems has been shown in [15]. However, the kernel
functions are assumed to satisfy a sufficient condition that is too stringent. For applications of
practical interest, this condition may lead to computational intractability, see [1]. As it is noted in
[15] one can actually weaken the sufficient condition for a class of kernels. In this section will carry
out the details of proving a well-posedness result based on these weekened sufficient conditions.
Existence of a unique solution is also obtained in [25] for Dirichlet- and Neumann-type linear
peridynamics boundary value problems.

Theorem 2.1. For a(·, ·) given in (2.3) with C satisfying (2.1), the variational problem (2.4) with
V = VD has a unique solution which satisfies the inequality

‖u‖L2 ≤ Λ‖b‖L2 ,

for some constant Λ = Λ(δ) > 0.

Proof. We observe that a(·, ·) is a symmetric bilinear form. Then the proof of the theorem follows
from the Riesz representation theorem and the following two lemmas that prove boundedness and
coercivity of a(·, ·) on the closed subspace VD of the Hilbert space L2(Ω) �

Lemma 2.2. (Boundedness) The bilinear form a(·, ·) given in (2.3) with C satisfying (2.1) is
bounded on L2(Ω) with the estimate

a(u, v) ≤ 2 β ‖u‖
L2(Ω)

‖v‖
L2(Ω)

,

where β := sup
x∈Ω

�
Ω

C(|x− x′|)dx′.
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Proof. Let u, v ∈ L2(Ω). Then we obtain the following estimates:

a(u, v) =
1
2

�
Ω

�
Ω

C(|x− x′|)1/2(u(x)− u(x′))C(|x− x′|)1/2(v(x)− v(x′)) dx′ dx

≤ 1
2

{�
Ω

�
Ω

C(|x− x′|)(u(x)− u(x′))2 dx′ dx
}1/2 {�

Ω

�
Ω

C(|x− x′|)(v(x)− v(x′))2 dx′ dx
}1/2

≤
{�

Ω

�
Ω

C(|x− x′|)(u(x)2 + u(x′)2) dx′ dx
}1/2 {�

Ω

�
Ω

C(|x− x′|)(v(x)2 + v(x′)2) dx′ dx
}1/2

Now we note that by a change in the order of integration and the fact that C(|x− x′|) is an even
(radial) function, one gets:�

Ω

�
Ω

C(|x− x′|)u2(x) dx′ dx =
�

Ω

�
Ω

C(|x− x′|)u2(x′) dx′ dx (2.6)

Then using (2.6), we have:

a(u, v) ≤ 2
{�

Ω

�
Ω

C(|x− x′|)u(x)2 dx′ dx
}1/2 {�

Ω

�
Ω

C(|x− x′|)v(x)2 dx′ dx
}1/2

≤ 2 β ‖u‖
L2(Ω)

‖v‖
L2(Ω)

,

and β < ∞ because C is a locally integrable function. �

Remark 2.3. We can fully quantify β in terms of δ for the canonical kernel C(|x−x′|) = χδ(|x−x′|).
Namely, β = vdδ

d, vd is the volume of the unit sphere in Rd. This quantification leads to an ex-
plicit condition number upper bound in terms of δ; see the companion paper [1, Lemma 1]. The
δ-quantification of β for general kernel functions will be also be provided in Corollary 4.1.

Lemma 2.4. (Coercivity) Assume all the hypotheses of Theorem 2.1. Then, there exists λ =
λ(Ω, δ, C) > 0 such that

λ ‖u‖2

L2(Ω)
≤ a(u, u) ∀u ∈ VD. (2.7)

Proof. The proof is an extension of the one given in [2, Prop. 2.5] for a similar bilinear form. We
construct a finite covering for Ω using strips of width δ

2 as follows.

S−1 := {x ∈ BΩ : dist(x, ∂(Ω) ≤ δ

2
}, (2.8)

S0 := {x ∈ BΩ \ S−1 : dist(x, S−1) ≤
δ

2
}, (2.9)

S1 := {x ∈ Ω : dist(x, ∂Ω) ≤ δ

2
}, (2.10)

Sj := {x ∈ Ω \
j−1⋃
k=1

Sk : dist(x, Sj−1) ≤
δ

2
}, j = 1 . . . , l. (2.11)
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Note that the number of strips is l = l(Ω, δ). We trivially have the following for j = 0, . . . , l:�
Ω

�
Ω

C(|x− x′|) |u(x′)− u(x)|2 dx′dx ≥
�

Sj

�
Sj−1

C(|x− x′|) |u(x′)− u(x)|2 dx′dx.

Note that since C is radial and locally integrable,�
Sj

C(|x− x′|) dx′ ≤ ‖C‖L1(B(0,R)), ∀ x ∈ Ω, (2.12)

where R is taken to be the diameter of Ω and B(0, R) is the ball of radius R centered at the origin.
A change in the order of integration, the inequality |u(x)|2 ≤ 2{|u(x′) − u(x)|2 + |u(x′)|2}, and
(2.12) yield the following:�

Sj

�
Sj−1

C(|x− x′|) |u(x′)− u(x)|2 dx′dx

≥ 1
2

�
Sj

�
Sj−1

C(|x− x′|) |u(x)|2 dx′dx−
�

Sj

�
Sj−1

C(|x− x′|) |u(x′)|2 dx′dx

=
1
2

�
Sj

{�
Sj−1

C(|x− x′|) dx′
}
|u(x)|2 dx−

�
Sj−1

{�
Sj

C(|x− x′|)dx

}
|u(x′)|2 dx′

≥ 1
2

�
Sj

{�
Sj−1

C(|x− x′|) dx′
}
|u(x)|2 dx− ‖C‖L1(B(0,R))

�
Sj−1

|u(x′)|2 dx′

≥ 1
2

min
x∈Sj

�
Sj−1

C(|x− x′|) dx′
�

Sj

|u(x)|2 dx− ‖C‖L1(B(0,R))

�
Sj−1

|u(x′)|2 dx′.

The function

F (x) :=
�

Sj−1

C(|x− x′|) dx′, x ∈ Sj

is continuous due to the fact that C(|x−x′|) is integrable and the continuity of the integral operator.
By construction of the covering, we have Sj−1 ∩B(x, δ) 6= ∅, x ∈ Sj , and hence, we obtain

F (x) > 0, x ∈ Sj ,

since B(x, δ) is in support of C(x− x′) by (2.1). Thus, F (x) attains its infimum in Sj . We denote
the minimum value by

αj := min
x∈Sj

F (x) > 0.

Consequently, we have the following inequality:

αj

2

�
Sj

|u(x)|2 dx ≤ a(u, u) + ‖C‖L1(B(0,R))

�
Sj−1

|u(x′)|2 dx′. (2.13)

Since u ∈ VD, u = 0 on BΩ, �
S−1

|u(x)|2 dx =
�

S0

|u(x)|2 dx = 0.
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Applying the above to (2.13) we get

α1

2

�
S1

|u(x)|2 dx ≤ 2a(u, u) (2.14)

For the cases j = 2, 3, we respectively have:

α2

2

�
S2

|u(x)|2 dx ≤ 2a(u, u) + ‖C‖L1(B(0,R))

�
S1

|u(x′)|2 dx′ (2.15)

α3

2

�
S3

|u(x)|2 dx ≤ 2a(u, u) + ‖C‖L1(B(0,R))

�
S2

|u(x′)|2 dx′. (2.16)

Substituting (2.14) into (2.15) and then (2.15) into (2.16) we obtain

α3

2

�
S3

|u(x)|2 dx ≤ 2(1 +
2 ‖C‖L1(B(0,R))

α2
+

2 (‖C‖L1(B(0,R)))2

α2 α1
) a(u, u).

Continuing this process we see the existence of a constant c(Ω, δ, C) satisfying:

αj

2

�
Sj

|u(x)|2 dx ≤ c(Ω, δ, C) a(u, u), j = −1, . . . , l. (2.17)

Adding (2.17) for j = −1, . . . , l and using the fact that the covering of Ω is composed of disjoint
strips, i.e., Ω = ∪l

k=−1Sk, Sj ∩ Sk = ∅, j 6= k, we arrive at the coercivity result. �

Remark 2.5. The above proof can be extended, as is done in [2, Prop. 2.5], to get the estimate

λ(Ω, δ, C) ‖u‖2

L2(Ω)
≤ a(u, u) +

�
S−1

|u(x)|2 dx, (2.18)

for functions u ∈ L2(Ω) that do not necessarily vanish on BΩ, where S−1 is the outermost strip
of the covering of Ω. However deducing a coercivity estimate from (2.18) does not seem possible
unless we assume a zero Dirichlet condition on the nonlocal boundary. Thus we may not apply
(2.18) for establishing coercivity of the mixed and Neumann problems.

We also notice that, from the Riesz representation theorem, the constant Λ in Theorem 2.1 is
equal to 1/λ(Ω, δ), with an obvious dependence on the horizon size δ. The explicit quantification
of this dependence of Λ on δ will be proved in the next section.

3. Well-posedness for Mixed and Pure Neumann problems

In this section we will obtain a coercivity estimate for the mixed and Neumann problems for a
class of kernel functions. We will also set the mathematical background for the spectral equivalence
estimate.
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3.1. Review of nonlocal Poincaré-type inequality. We begin by reviewing some estimates
obtained in [5] and [18] on the nonlocal characterization of Sobolev functions. Before stating these
nonlocal Poincaré -type inequalities we recall the standard local Poincaré’s inequality:

‖u‖
L2(Ω)

≤ cPncr‖∇u‖
L2(Ω)

(3.1)

holds true for all u ∈ H1(Ω) satisfying either�
Ω

u dx = 0 or |{x ∈ Ω : u(x) = 0}| = µ > 0.

The constant cPncr depends only on d, µ and Ω and we always assume that it is the best constant.
The nonlocal Poincaré-type inequality obtained in [5] and later improved in [18] utilizes the sequence
of radial functions ρn satisfying the following conditions:

ρn ≥ 0 a.e. in Rd,

�
Rd

ρn = 1, ∀n ≥ 1, and lim
n→∞

�
|h|>r

ρn(h)dh = 0, ∀r > 0. (3.2)

The following is the nonlocal Poincaré-type inequality proved in [18].

Lemma 3.1. For any η > 0, there exists n0 such that

‖u‖2

L2(Ω)
≤ (

cPncr

kd
+ η)

�
Ω

�
Ω

|u(x)− u(x′)|2

|x− x′|2
ρn(|x− x′|) dx′dx (3.3)

for all u ∈ VN and n ≥ n0. Here kd is a constant that depends only on d.

Note that inequality (3.3) in Lemma 3.1 holds true for functions in L2(Ω) with zero average. We
extend Lemma 3.1 to functions that vanish on a nontrivial subset of Ω in the following. 1

Lemma 3.2. For any η > 0, there exists n0 such that

‖u‖2

L2(Ω)
≤ (

cPncr

kd
+ η)

�
Ω

�
Ω

|u(x)− u(x′)|2

|x− x′|2
ρn(|x− x′|) dx′dx,

for all u ∈ VM and n ≥ n0. Here, kd is a constant that depends only on d.

We remark that in the above two lemmas the choice of n0 not only depends on η but also on
Ω, the sequence of radial functions ρn used and the subspaces VN and VM . We also note that
the nonlocal Poincaré-type estimates hold for functions that belong to closed subspaces of L2(Ω).
However, the standard local Poincaré’s inequality applies to closed subspaces of H1(Ω), which
requires more regularity than L2(Ω).

The proof of Lemma 3.2 uses a similar line of argument as in that of Lemma 3.1; see [18]. We
begin with the following extension of a compactness result.

1Recall that BΩe is a subset of BΩ whose volume measure is positive.
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Lemma 3.3. If (un) ⊂ VM is a bounded sequence in L2(Ω) such that�
Ω

�
Ω

|un(x)− un(x′)|2

|x− x′|2
ρn(|x− x′|) dx′dx ≤ b0 ∀n ≥ 1,

then the following statements hold:

(i) (un) is relatively compact in L2(Ω).
(ii) If u ∈ L2(Ω) and unj → u in L2(Ω), then u ∈ H1(Ω) ∩ VM .
(iii) Moreover, the limit function u satisfies the following gradient estimate:�

Ω
|∇u|2 ≤ b0/kd.

Proof. The results follow from [18, Thm 1.2] and the fact that VM is a closed subspace of L2(Ω). �

Proof of Lemma 3.2. We argue by contradiction. Assume that the lemma is false. Then there
exists c0 > cPncr/kd, and a sequence un ∈ VM with the property that

‖un‖2

L2(Ω)
= 1 and

�
Ω

�
Ω

|un(x)− un(x′)|2

|x− x′|2
ρn(|x− x′|) dx′ dx ≤ 1/c0.

Observe that (un) satisfies the assumption of Lemma 3.3 and so we can extract a subsequence that
converges strongly in L2 to a function u ∈ H1 ∩ VM . Moreover,

‖u‖2

L2(Ω)
= 1, and

�
Ω
|∇u|2 dx ≤ 1/(c0kd) < 1/cPncr,

since c0 > cPncr/kd. But this contradicts (3.1). �

3.2. The Mixed and Pure Neumann variational problems are well-posed. We are now
ready to state the well-posedness of the pure Neumann and mixed problems for a restricted class
of kernels. In addition to the requirements of local integrability and (2.1), we also assume that the
kernel is of the form:

C(x,x′) = γ(
|x− x′|

δ
) (3.4)

where

γ ≥ 0, supp(γ) ⊂ (0, 2), γ(r)rd−1 ∈ L1
loc(0,+∞), and

� ∞

0
γ(r)rd+1 dr = 1. (3.5)

Then, a simple calculation yields that the sequence ρδ(r) defined by

ρδ(r) :=
1

ωdδd+2
γ(

r

δ
)r2

satisfies (3.2) and �
Ω

�
Ω

|u(x)− u(x′)|2

|x− x′|2
ρδ(|x− x′|) dx′dx =

1
ωdδd+2

a(u, u).

In the above ωd is the surface area of the unit sphere in Rd.
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Now application of Lemma 3.1 and Lemma 3.2 for this sequence establishes the coercivity of the
bilinear form a(·, ·) on VM and VN .

Corollary 3.4. (Coercivity) For a(·, ·) given in (2.3) and C satisfying (2.1) and (3.4), there
exist δ0 = δ0(Ω, γ) > 0 and λ = λ(Ω, δ0) such that for all 0 < δ < δ0 and u ∈ VM or VN :

λ δd+2 ‖u‖2

L2(Ω)
≤ a(u, u).

Now the well-posedness of the mixed or Neumann variational problem follows from the Riesz
representation theorem.

Theorem 3.5 (Well-posedness). For a(·, ·) given in (2.3) and C satisfying (2.1) and (3.4) the
variational problem (2.4) with V = VN or V = VM has a unique solution which satisfies the
inequality

‖u‖L2 ≤ Λ‖b‖L2 ,

for some constant Λ > 0.

Remark 3.6 (Example). A constant multiple of the truncated power function

γ(r) = rα χ[0,2](r)

satisfies (3.5) if and only if α > −d. Other examples of radial functions of the form,

γ(r) = ln(r) rα χ[0,2](r),

can also be constructed.

4. Spectral equivalence and sharpness of the upper bound

Combining Lemma 2.2 and Lemma 3.4, we arrive at the main spectral equivalence result used
in the companion article [1].

Corollary 4.1. For a(·, ·) given in (2.3) and C satisfying (2.1) and (3.4) there exist δ0 > 0,
λ = λ(Ω, δ0) and λ = λ(γ, d) such that for all 0 < δ < δ0 and u ∈ VD, VM , or VN , we have

λ δd+2 ‖u‖2

L2(Ω)
≤ a(u, u) ≤ λδd‖u‖2

L2(Ω)
. (4.1)

Proof. The only part that needs proof is the upper bound and it follows from δ-quantification of
the upper bound β found in Lemma 2.2. To that end, let R be the diameter of Ω. Then for any
x ∈ Ω, we have Ω ⊂ B(x, R) and

β ≤ sup
x∈Ω

�
B(x,R)

C(|x− x′|)dx′ =
�

B(0,R)
C(|x′|)dx′

Since C is radial, we can estimate the last integral as�
B(0,R)

C(|x′|)dx′ =
�

B(0,R)
γ(
|x′|
δ

)dx′ = ωdδ
d

� R/δ

0
γ(s)sd−1ds ≤ λδd.
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In the above we have integrated in polar coordinates and ωd is the surface area of the unit sphere
in Rd. Moreover, the constant λ depends on the diameter of Ω and the L1-norm of γ(r)rd−1. �

Remark 4.2. The spectral equivalence (4.1) is the result needed in the companion article [1]
and it leads to a remarkable conditioning result. Namely, the condition number of the discretized
operator can be bounded independently from the mesh size; κ(K) . δ−2, where K is a stiffness
matrix. This is a pioneering fundamental result which would guide preconditioner construction for
nonlocal problems.

We complete this section by providing a 1D example that establishes the sharpness of the δ-
quantification in the upper bound by using the following piecewise constant function Ω = [−1, 2]:

u(x) :=
{

1, x ∈ [0, δ]
0, otherwise. (4.2)

We utilize the canonical kernel C(x, x′) = χδ(|x − x′|) as in (1.7). Note that a(u, u) is identically
zero in the domain of integration

(x, x′) ∈ [−1, 2]× [x− δ, x + δ] ∩ [−1, 2], (4.3)

except the following regions:

Region I: (x, x′) ∈ [−δ, 0] × [0, x + δ]; u(x) = 0, u(x′) = 1; a(u, u) = δ2/4
Region II: (x, x′) ∈ [0, δ] × [x− δ, 0]; u(x) = 1, u(x′) = 0; a(u, u) = δ2/4
Region III: (x, x′) ∈ [0, δ] × [δ, x + δ]; u(x) = 0, u(x′) = 1; a(u, u) = δ2/4
Region IV: (x, x′) ∈ [δ, 2δ] × [x− δ, δ]; u(x) = 0, u(x′) = 1; a(u, u) = δ2/4
Region IV: (x, x′) ∈ [0, δ] × [0, δ]; u(x) = 1, u(x′) = 1; a(u, u) = 0.

Adding contributions from all regions, we conclude that

a(u, u) = δ2.

On the other hand,

‖u‖2

L2(Ω)
=

� δ

0
dx = δ.

Finally, we see that the Rayleigh quotient becomes

a(u, u)
‖u‖2

L2(Ω)

= δ, (4.4)

implying that the upper bound in Corollary 4.1 holds with λ = 1.

In the companion article [1], we also establish the sharpness of the lower bound numerically by
using piecewise constant and piecewise linear finite element discretizations.
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5. Conclusion

We provided a variational theory for nonlocal problems and proved the well-posedness of the weak
formulation of nonlocal boundary value problems with Dirichlet, Neumann, and mixed boundary
conditions for general kernel functions that are practical in the peridynamics setting.

We proved a nonlocal Poincaré inequality which reveals the horizon size quantification by utilizing
a nonlocal characterization of Sobolev spaces. Then, we used this quantification to prove a spectral
equivalence estimate which leads to a mesh size independent upper bound for the condition number
of the underlying discretized operator. The quantification is the complementing result needed in
the companion article [1]. Hence, we proved the first fundamental conditioning result that would
guide preconditioner construction for nonlocal problems. We established the sharpness of the upper
bound in the spectral equivalence by providing an example.
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