
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. (2010)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nla.761

Robust multigrid preconditioners for the high-contrast biharmonic
plate equation

Burak Aksoylu1,2,∗,† and Zuhal Yeter2

1Department of Mathematics, TOBB University of Economics and Technology, Ankara 06560, Turkey
2Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

SUMMARY

We study the high-contrast biharmonic plate equation with Hsieh–Clough–Tocher discretization. We
construct a preconditioner that is robust with respect to contrast size and mesh size simultaneously based
on the preconditioner proposed by Aksoylu et al. (Comput. Vis. Sci. 2008; 11:319–331). By extending the
devised singular perturbation analysis from linear finite element discretization to the above discretization,
we prove and numerically demonstrate the robustness of the preconditioner. Therefore, we accomplish a
desirable preconditioning design goal by using the same family of preconditioners to solve the elliptic
family of PDEs with varying discretizations. We also present a strategy on how to generalize the proposed
preconditioner to cover high-contrast elliptic PDEs of order 2k, k>2. Moreover, we prove a fundamental
qualitative property of the solution to the high-contrast biharmonic plate equation. Namely, the solution
over the highly bending island becomes a linear polynomial asymptotically. The effectiveness of our
preconditioner is largely due to the integration of this qualitative understanding of the underlying PDE
into its construction. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We study the construction of robust preconditioners for the high-contrast biharmonic plate equation
(also referred to as the biharmonic equation). Our aim is to achieve robustness with respect to
the contrast size and the mesh size simultaneously, which we call as m- and h-robustness, respec-
tively. In the case of a high-contrast diffusion equation, we studied the family of preconditioners
BAGKS by proving and numerically demonstrating that the same family used for finite element
discretization [1] can also be used for conservative finite volume discretizations with minimal
modification [2]. In this article, we extend the applicability of BAGKS even further and show
that the very same preconditioner can be used for a wider family of elliptic partial differential
equations (PDEs). The broadness of the applicability of BAGKS has been achieved by singular
perturbation analysis (SPA) as it provides valuable insight into qualitative nature of the underlying
PDE and its discretization. In order to study the robustness of BAGKS, we use an SPA that is
similar to the one devised on the matrix entries by Aksoylu et al. [1]. SPA turned out to be
an effective tool in analyzing certain behaviors of the discretization matrix K (m) such as the
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asymptotic rank, decoupling, and low-rank perturbations (LRP) of the resulting submatrices. LRPs
are exploited to accomplish dramatic computational savings and this is the main numerical linear
algebra implication.

The devised SPA is utilized to explain the properties of the submatrices related to K (m). In
particular, SPA of highly bending block KHH(m), as modulus of bending m→∞, has important
implications for the behavior of the Schur complement S(m) of KHH(m) in K (m). Namely,

S(m) :=KLL−KLHK
−1
HH(m)KHL = S∞+O(m−1), (1)

where S∞ is a LRP of KLL. The rank of the perturbation depends on the number of disconnected
components comprising the highly bending region. This special limiting form of S(m) allows us
to build a robust approximation of S(m)−1 by merely using solvers for KLL by the help of the
Sherman–Morrison–Woodbury formula.

Preconditioning for the biharmonic equation was extensively studied in the domain decom-
position setting [3, 4] and multigrid, BPX, and hierarchical basis settings [5–10]. Other solution
strategies were also developed such as fast Poisson solvers [11, 12] and iterative methods [13].
However, there is only limited preconditioning literature available for discontinuous coefficients.
Domain decomposition preconditioners have been studied [14] for the mortar-type discretization
of the biharmonic equation with large jumps in the coefficients.

The high-contrast in material properties is ubiquitous in composite materials. Hence, the
modeling of composite materials is an immediate application of the biharmonic plate equation
with high-contrast coefficients. Since the usage of composite materials is steadily increasing, the
simulation and modeling of composites have become essential. We witness that the utilization of
composites has become an industry standard. For instance, lightweight composite materials are
now being used in modern aircrafts by Airbus and Boeing. There is imminent need for robust
preconditioning technology in the computational material science community as the modeling and
simulation capability of composites evolve.

In [15], the Euler–Bernoulli equation with discontinuous coefficients was studied for the kine-
matics of composite beams. In the beam setting, the physical meaning of the PDE coefficient
corresponds to the product of Young’s modulus and moment of inertia [15] [16, p. 103]. In the
biharmonic plate equation setting, the PDE coefficient represents the plate modulus of bending
[16, p. 406]. Nonhomogeneous elastic plates have been considered in [17] with varying modulus
of elasticity.

Our model problem is limited to the biharmonic equation that captures only the isotropic
materials. The extension of our analysis to a more generalized fourth-order PDE is widely open.
Such PDEs have an important role in structural mechanics as they are used in modeling anisotropic
materials. Plane deformations of anisotropic materials were studied in [18], but extension to a
simultaneously heterogeneous and anisotropic case needs to be further explored. Grossi [19] has
studied the existence of the weak solutions of anisotropic plates. The coercivity of the bilinear
forms has also been established, which may lay the foundations for our future work related to
LRPs.

The remainder of the article is structured as follows. In Section 2, we present the underlying
high-contrast biharmonic plate equation and the associated bilinear forms. Subsequently, the effects
of high-contrast on the spectrum of stiffness matrix and its subblocks are also discussed. Since
the proposed preconditioner is based on LRP, in Section 3, we study the LRP of the limiting
Schur complement as in (1). In Section 4, we present the aforementioned SPA and reveal the
asymptotic qualitative nature of the solution. In particular, the solution over the highly bending
region converges to a linear polynomial as m→∞. In Section 5, we introduce the proposed
preconditioner and prove its effectiveness by establishing a spectral bound for the preconditioned
system. In Section 7, a strategy is presented on how to generalize the proposed preconditioner to
cover high-contrast elliptic PDEs of order 2k, k>2. In Section 6, the m- and h-robustness of the
preconditioner are demonstrated by numerical experiments.
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2. THE UNDERLYING PDE AND THE LINEAR SYSTEM

We study the following high-contrast biharmonic equation for the clamped plate problem:

∇2(�∇2u) = f in �⊂R2,

u=�nu = 0 on ��.
(2)

We restrict the plate bending process to a binary regime (see Figure 1) in which the coefficient �
is a piecewise constant function with the following values:

�(x)=
{
m�1, x ∈�H,

1, x ∈�L.
(3)

It is quite common to idealize the discontinuous PDE coefficient � by a piecewise constant
function [20, 21]. In the case of high-contrast diffusion equation, Aksoylu and Beyer [22] showed
that the idealization of diffusivity by piecewise constant coefficients is meaningful by showing a
continuous dependence of the solutions on the diffusivity; also see [23]. A similar justification can
be extended to the high-contrast biharmonic plate equation.

2.1. Bilinear forms for the biharmonic equation

In the theory of elasticity, potential energy is defined by using rotationally invariant functions. For
plates, the potential energy is given by [24, p. 30]:

J (v) := 1

2

∫
�

�[{trace Hess}2+2(�−1)detHess]dx−
∫
�
fvdx, (4)

where Hess is the Hessian,

Hess=
[

�11v �12v

�21v �22v

]
.

The bilinear form corresponding to energy minimization in (4) is given by

a(u,v) :=
∫

�
�[∇2u∇2v+(1−�){2�12u�12v−�11u�22v−�22u�11v}]dx, (5)

where 0<�< 1
2 is the Poisson ratio. Note that the straightforward bilinear form associated with (2)

is obtained by using Green’s formula:∫
�

∇2(�∇2u)v dx=
∫

�
�∇2u∇2v dx+

∫
��

��n∇2uv d�−
∫

��
�∇2u�nv d�. (6)

We see that both (5) and (6) contain the so-called canonical bilinear form, ã(u,v), associated with
the biharmonic equation (2):

ã(u,v) :=
∫

�
�∇2u∇2v dx . (7)

Figure 1. �=�H∪�L where �H and �L are highly and lowly bending regions, respectively.
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Figure 2. The HCT discretization of the biharmonic equation with m=109. (Left) The spectrum of the
stiffness matrix K . (Middle) Spectrum of the diagonally scaled stiffness matrix. (Right) The zoomed out
version of the three smallest eigenvalue of diagonally scaled matrix. Notice the three small eigenvalues

of order O(m−1) corresponding to the kernel of the Neumann matrix, span {1H, xH, y
H
}.

When u,v∈H2
0 (�), both bilinear forms a(u,v) and ã(u,v) correspond to the strong formulation (2)

due to second Green’s formula and the zero contribution of the following term:∫
�
(1−�){2�12u�12v−�11u�22v−�22u�11v}dx . (8)

2.2. Effects of high-contrast on the spectrum

Roughness of PDE coefficients causes loss of robustness of preconditioners. This is mainly due
to clusters of eigenvalues with varying magnitude. Although diagonal scaling has no effect on the
asymptotic behavior of the condition number, it leads to an improved clustering in the spectrum.
The spectrum of the diagonally scaled stiffness matrix, A, is bounded from above and below except
three eigenvalues in the case of a single isolated highly bending island. On the other hand, the
spectrum of K contains eigenvalues approaching infinity with cardinality depending on the number
of degrees of freedom (DOF) contained within the highly bending island. For the case of m=109,
we depict the spectra of K and A and their subblocks in Figure 2. Clustering provided by diagonal
scaling can be advantageous for faster convergence of Krylov subspace solvers especially when
deflation methods designed for small eigenvalues are used; for further discussion see [25].

Utilizing the matrix entry-based analysis by Graham and Hagger [26] for linear finite elements
(FE), in [2], the authors extended the spectral analysis to cell-centered finite volume discretization
and obtained an identical spectral result for A. Namely, the number of small eigenvalues of A
depends on the number of isolated islands comprising the highly bending region. We observe a
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Figure 3. HCT element.

similar behavior for the biharmonic plate equation where the only difference is that for each island
we observe three small eigenvalues rather than one. The three-dimensional kernel of the Neumann
matrix is responsible for that difference; see Section 3. A similar matrix entry-based analysis can
be applied to this problem, but this analysis is more involved for the Hsieh–Clough–Tocher (HCT)
discretization than that for linear FE. Hence, we exclude it from the scope of this article.

3. DISCRETIZATION AND LRPS

We consider an H2-conformal Galerkin finite element discretization with an HCT element.
The HCT element is constructed by subdividing the triangle element into three subtriangles by
connecting its vertices to its centroid. Then, a C1 function consisting of piecewise cubic polyno-
mials defined on each subtriangle is built. The function value and its first derivatives are specified
on the vertices of the original triangle, and the normal derivative of the function is specified on the
midpoint of each sides of the triangle; see Figure 3. HCT element is conforming but nonnested,
and consists of 12 DOF. For a more detailed definition of the HCT element, see [27].

Let the linear system arising from the discretization be denoted by:

K (m) x =b. (9)

� is decomposed with respect to magnitude of the coefficient value as

�=�H∪�L, (10)

where �H and �L denote the highly and lowly bending regions, respectively. DOF that lie on
the interface, � :=�H∩�L, between the two regions are included in �H. When m-dependence
is explicitly stated and the discretization system (9) is decomposed with respect to (10), i.e. the
magnitude of the coefficient values, we arrive at the following 2×2 block system:

[
KHH(m) KHL

KLH KLL

][
xH

xL

]
=

[
bH

bL

]
. (11)

There are important properties associated with the KHH block in (11): It is the only block that has
m-dependence, and furthermore, a matrix with a low-rank kernel can be extracted from it. Our
preconditioner construction is based on LRPs from this extraction. Next, we explain how to extract
the so-called Neumann matrix and why a(u,v) is the suitable bilinear form for that purpose.

By rewriting (5) as the following:

a(u,v)=
∫

�
�[�∇2u∇2v+(1−�){�11u�11v+�22u�22v+2�12u�12v}]dx, (12)
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we see that

a(v,v)= ��‖∇2v‖2L2(�)+�(1−�)|v|2H2(�)

� �(1−�)|v|2H2(�). (13)

The inequality (13) has important implications. Namely, a(v,v) is VP1 (�)-coercive where VP1 (�)⊂
H2(�) is a closed subspace such that VP1 (�)∩P1=∅ and P1 denotes the set of polynomials of
degree at most 1. Furthermore, (13) immediately implies that a(v,v) is H2

0 (�)-coercive.
Let Th be the triangulation of � and V h(�) be the associated discrete space. Let V h(�H) be

the restriction of V h(�) onto �H based on the decomposition in (10). We define the Neumann
matrix NHH as follows:

〈NHH�h
H
,�h

H
〉 :=a(�h

H,�h
H),

where �h
H,�h

H∈V h(�H) are the basis functions whose values of DOF are denoted by �h
H
and �h

H
,

respectively. Since a(·, ·) is VP1 (�)-coercive, this implies by (13) that

kerNHH=Ph
1 |�H

= span{1H, xH, y
H
}. (14)

Hence, with m defined in (3), KHH in (11) has the following decomposition:

KHH(m)=mNHH+R, (15)

where R is the coupling matrix corresponding to DOF on the interface �.
Now, we are in a position to reveal the resulting main numerical linear algebra implication. As

m→∞, the limiting Schur complement S∞ in (1) becomes a rank-3 perturbation of KLL. This
result relies on the fact that the inverse of the limiting KHH is of rank-3; see (17). This is due to
the fact that NHH has a rank-3 kernel whose (normalized) discretization is given by:

eH := [1H, xH, y
H
]. (16)

4. MAIN SPA RESULTS

Lemma 4.1
The asymptotic behavior of the submatrices in (30) is given as follows:

KHH(m)−1 = eH�−1etH+O(m−1), (17)

S(m)= KLL−(KLLeH)�
−1(etHKLL)+O(m−1), (18)

KLHKHH(m)−1 = (KLL eH)�
−1 etH+O(m−1), (19)

where

� :=etHKHHeH. (20)

Proof
Since NHH is symmetric positive semidefinite, using (14) we have the following spectral decom-
position where nH denotes the cardinality of DOF in �H:

Z tNHHZ =diag(�1, . . . ,�nH−3,0,0,0), (21)

where {�i : i=1, . . . ,nH} is a nonincreasing sequence of eigenvalues of NHH and Z is orthogonal.
Since, the eigenvectors corresponding to the zero eigenvalues are discretizations of the polynomials
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1, x , and y, we can write Z = [Z̃ |eH] where eH is defined in (16). Using (15), we have:

Z tKHH(m)Z =
[
m diag(�1, . . . ,�nH−3)+ Z̃ tRZ̃ Z̃ tReH

etHRZ̃ etHReH

]

=:

[
�̃(m) 	̃

	̃
t

�

]
. (22)

To find the limiting form of KHH(m)−1 note that

�̃(m)=m diag(�1, . . . ,�nH−3)+ Z̃ tRZ̃

=m diag(�1, . . . ,�nH−3)( Ĩ +m−1 diag(�−1
1 , . . . ,�−1

nH−3)Z̃
tRZ̃ ).

Then,

‖�̃(m)−1‖2�
m−1maxi�nH−3 �−1

i

1−m−1maxi�nH−3 �−1
i ‖Z̃ tRZ̃‖2

.

For sufficiently large m, we can conclude the following:

�̃(m)−1=O(m−1). (23)

We proceed with the following inversion:⎡
⎣�̃(m) 	̃

	̃
t

�

⎤
⎦

−1

=U (m)V (m)U (m)t,

where

U (m) :=
[
Ĩ −�̃(m)−1	̃

0t 1

]
,

V (m) :=
⎡
⎣�̃(m)−1 0

0t (�− 	̃
t
�̃(m)−1	̃)−1

⎤
⎦ .

Then, (23) implies that

U (m)= I +O(m−1),

V (m)=
[
O 0

0t �−1

]
+O(m−1).

Combining the above results, we arrive at⎡
⎣�̃(m) 	̃

	̃
t

�

⎤
⎦

−1

=
[
O 0

0t �−1

]
+O(m−1),

and, by (22), we have

KHH(m)−1 = Z

[
O 0

0t �−1

]
Z t+O(m−1)

=: eH�−1etH+O(m−1), (24)

which proves (17) of the Lemma.
Parts (18) and (19) follow from simple substitution and using (31). �
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Remark 4.1
If we further decompose DOF associated with �H into a set of interior DOF associated with
index I and interface DOF with index �, we obtain the following block representation of KHH:

KHH(m)=
[
KII(m) KI�(m)

K�I (m) K��(m)

]
. (25)

The entries in the block K��(m) are assembled from contributions both from finite elements in
�H and �L, i.e. K��(m)= A(H)

�� (m)+A(L)
��.

We further write eH in block form; eH= (etI ,e
t
�)

t. Finally, we note that the off-diagonal blocks
have the decomposition:

KLH= [0 KL�]=K t
HL. (26)

Therefore, the results of Lemma 4.1 can be rewritten as follows:

KHH(m)−1 = eH(e
t
�K

(L)
��e�)

−1etH+O(m−1),

S(m)= KLL−(KL�e�)(e
t
�K

(L)
��e�)

−1(et�K�L )+O(m−1),

KLHKHH(m)−1 = (KL�e�)(e
t
�K

(L)
��e�)

−1etH+O(m−1).

We will use the following limit values of the block matrices (in Lemma 4.1) in the definition
of the preconditioner in (32):

K∞
HH := eH�−1etH, (27)

S∞ := KLL−KLHK
∞
HH KHL. (28)

4.1. Qualitative nature of the solution

We advocate the usage of SPA because it is a very effective tool in gaining qualitative insight about
the asymptotic behavior of the solution of the underlying PDE. Through SPA, in Lemma 4.1, we
were able to fully reveal the asymptotic behavior of the submatrices of K in (30). This information
leads to a characterization of the limit of the underlying discretized inverse operator. We now
prove that the solution over the highly bending island converges to a linear polynomial. In other
words, x∞

H ∈ spaneH. This is probably the most fundamental qualitative feature of the solution of
the high-contrast biharmonic plate equation.

Lemma 4.2
Let eH be as in (16). Then,

xH(m)=eHcH+O(m−1), (29)

where cH is a 3×1 vector determined by the solution in the lowly bending region.

Proof
We prove the result by providing an explicit quantification of the limiting process based on
Lemma 4.1:

xL(m) = S−1(m){bL−KLHK
−1
HH(m)bH}

= S−1
∞ {bL−KLH(eH�−1etH)bH}+O(m−1)

=: x∞
L +O(m−1),

Copyright � 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
DOI: 10.1002/nla



ROBUST MULTIGRID PRECONDITIONERS FOR BIHARMONIC PLATE EQUATION

xH(m) = K−1
HH(m){bH−KHLxL(m)}

= eH�−1etH{bH−KHLx
∞
L }+O(m−1)

=: eHcH+O(m−1). �

5. CONSTRUCTION OF THE PRECONDITIONER

The exact inverse of K can be written as:

K−1=
[
IHH −K−1

HHKHL

0 ILL

][
K−1
HH 0

0 S−1

][
IHH 0

−KLHK
−1
HH ILL

]
, (30)

where IHH and ILL denote the identity matrices of the appropriate dimension and the Schur
complement S is explicitly given by:

S(m)=KLL−KLHK
−1
HH(m)KHL. (31)

Let the limit in (17) be denoted by K∞
HH :=eH�−1etH. Based on the above perturbation analysis,

our proposed preconditioner is defined as follows:

BAGKS(m) :=
[
IHH −K∞

HH KHL

0 ILL

][
KHH(m)−1 0

0 S−1
∞

][
IHH 0

−KLHK
∞
HH ILL

]
, (32)

where K∞
HH and S∞ are defined in (27) and (28), respectively.

We need the following auxiliary result to be used in the proof of Theorem 5.1, which characterizes
the spectral behavior of the preconditioned system.

Lemma 5.1
The following statement holds for K−1/2

HH :

K−1/2
HH =eH�−1/2 etH+O(m−1/2), (33)

where � is the 3×3 SPD matrix independent of m defined in (20).

Proof
We start by writing down the spectral decomposition of KHH(m)

Q(m)tKHH(m)Q(m)=diag(
1(m), . . . ,
nH−3(m),
nH−2(m),
nH−1(m),
nH(m)),

where {
i (m) : i=1, . . . ,nH} denotes a nonincreasing ordering of the eigenvalues of KHH(m). Since
KHH(m) is SPD, we have 
i (m)>0 for all i�nH. We use the main fact that eigenvalues and
eigenvectors of a symmetric matrix are Lipschitz continuous functions of the matrix entries [28, 29].

By (21) and (24) in Lemma 4.1, we give the following spectral decomposition:

K−1
HH(m)= z10z

t
1+·· ·+znH−30z

t
nH−3+eH�−1 etH+O(m−1). (34)

Note that � in (22) is a 3×3 symmetric, and hence, diagonalizable matrix. We proceed toward a
fully diagonalized form of the limiting K−1

HH(m). For that, we use the diagonalization of �−1:

�−1= ẑH1

−1
H1
ẑtH1

+ ẑHx 

−1
Hx
ẑtHx

+ ẑHy

−1
Hy
ẑtHy

.

Therefore, we have the following expression for the last term in (34):

eH�−1 etH= [zH1 zHx zHy ]diag(

−1
H1

,
−1
Hx

,
−1
Hy
)[zH1 zHx zHy ]

t, (35)
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where

[zH1 zHx zHy ] := [eH1 eHx eHy ][ẑH1 ẑHx ẑHy ],

[eH1 ,eHx ,eHy ] := eH.

Now by substituting (35) in (34), we have the following spectral decomposition that corresponds
to the fully diagonalized version:

K−1
HH(m) = z10z

t
1+·· ·+znH−30z

t
nH−3+zH1
H1

ztH1
+zHx
Hx

ztHx
+zHy
Hy

ztHy
+O(m−1)

=: Z∞diag(0, . . . ,0,
−1
H1

,
−1
Hx

,
−1
Hy
)Z t

∞ +O(m−1). (36)

The expression in (36) also implies the convergence of the eigenvectors of KHH(m):

Q(m)= Z∞+O(m−1). (37)

Note that Z∞ differs from Z in (21) only in the last three columns due to diagonalization of �.
From (36), we obtain a characterization of the largest three eigenvalues of KHH(m)−1:


nH−2(m)−1 = 
−1
H1

+O(m−1), (38a)


nH−1(m)−1 = 
−1
Hx

+O(m−1), (38b)


nH(m)−1 = 
−1
Hy

+O(m−1). (38c)

Using (36) and (38), we arrive at the following:

diag(
1(m)−1/2, . . . ,
nH−3(m)−1/2,
nH−2(m)−1/2,
nH−1(m)−1/2,
nH(m)−1/2)

=diag(0, . . . ,0,
−1/2
H1

,
−1/2
Hx

,
−1/2
Hy

)+O(m−1/2). (39)

By using (39) and (37), we arrive at the desired result:

KHH(m)−1/2 = Q(m)diag(
1(m)−1/2, . . . ,
nH(m)−1/2)Q(m)t

= Z∞diag(0, . . . ,0,
−1/2
H1

,
−1/2
Hx

,
−1/2
Hy

)Z t
∞+O(m−1/2)

= [zH1 zHx zHy ]diag(

−1/2
H1

,
−1/2
Hx

,
−1/2
Hy

)[zH1 zHx zHy ]
t+O(m−1/2)

= eH�−1/2 etH+O(m−1/2). �

The following theorem shows that BAGKS is an effective preconditioner for m�1.

Theorem 5.1
For sufficiently large m, we have

�(BAGKS(m)K (m))⊂ [1−cm−1/2,1+cm−1/2]

for some constant c independent of m, and therefore

�(BAGKS(m) K (m))=1+O(m−1/2).

Proof
Let us factorize the preconditioner as BAGKS= L tL with

L :=
[
KHH(m)−1/2 0

−S−1/2
∞ P∞

LH S−1/2
∞

]
,
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where the limiting Schur complement S(m) and KLHK
−1
HH is denoted by S∞ and P∞

LH, respectively.
We can easily show that

�(BAGKSK )=�(LK L t)=�(I +E). (40)

Note that

P∞
LHKHHP

∞t

LH −P∞
LHKHL=KLH(eH�−1 etHKHHeH�−1 etH−eH�−1 etH)KHL=0. (41)

We give a step of the operation leading to (40). Using (41), the (2,2)th block entry of the LK L t

reads:

S−1/2
∞ [P∞

LHKHHP
∞t

LH −P∞
LHKHL−KLHP

∞t

LH +KLL]S
−1/2
∞ = I.

The other entries of LKLt can be computed in a similar way.
Using (33), we have

ELH= S−1/2
∞ KLH(IHH−eH�−1 etHKHH)eH�−1/2 etH+O(m−1/2)=O(m−1/2).

Hence �(E), the spectral radius of E , is O(m−1/2), which together with (40) completes the proof.
�

6. NUMERICAL EXPERIMENTS

The goal of the numerical experiments is to compare the performance of the two preconditioners:
AGKS and MG. The domain is a unit square whose coarsest-level triangulation consists of 32
triangles. We consider the case of a single highly bending island located at the region [ 14 ,

2
4 ]×[ 14 , 2

4 ]
consisting of two coarsest-level triangles. For an extension, we also consider the cases of the
L-shaped island and the two disconnected islands. The implementation of HCT discretization is
based on Pozrikidis’ software provided in [16]. For these experiments, the problem sizes are 131,
451, 1,667, 6,403 for levels 1, 2, 3, and 4.

We denote the norm of the relative residual at iteration i by rr(i):

rr(i) := ‖r (i)‖2
‖r (0)‖2 ,

where r (i) denotes the residual at iteration i with a stopping criterion of rr(i)�10−7. In Tables I–V,
the preconditioned conjugate gradient iteration count and the average reduction factor are reported
for combinations of preconditioner, smoother types, and the number of smoothing iterations. The
average reduction factor of the residual is defined as:

(rr(i))1/ i .

We enforce an iteration bound of 60. If the method seems to converge slightly beyond this
bound, we denote it by 60+, whereas stalling is denoted by ∞.

We use the Galerkin variational approach to construct the coarser-level algebraic systems. The
multigrid preconditioner MG is derived from the implementation by Aksoylu et al. [30]. We employ
a V (s,s)-cycle, s=1, 5, 10, with point symmetric Gauss–Seidel (sGS) and point Gauss–Seidel
(GS) smoothers. A direct solver is used for the coarsest level.
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Table I. Single Island Case: AGKS+HCT+sGS+smooth number 1-5-10.

N\m 100 101 102 103 104 105 107 109 1010

Smooth number=1
131 24, 0.485 20, 0.447 18, 0.407 17, 0.371 17, 0.381 16, 0.337 18, 0.371 16, 0.362 17, 0.384
451 52, 0.730 38, 0.650 21, 0.452 13, 0.286 12, 0.249 12, 0.256 13, 0.279 12, 0.253 11, 0.213
1667 60+, 0.857 60+ ,0.768 33, 0.610 20, 0.426 18, 0.401 19, 0.410 21, 0.447 19, 0.420 19, 0.417
6403 ∞, 0.972 60+, 0.930 60+, 0.839 45, 0.692 37, 0.637 36, 0.636 36, 0.638 36, 0.635 39, 0.661

Smooth number=5
131 24, 0.485 20, 0.447 18, 0.407 17, 0.371 17, 0.381 16, 0.337 18, 0.371 16, 0.362 17, 0.384
451 40, 0.664 28, 0.547 15, 0.330 8, 0.131 6, 0.054 6, 0.023 4, 0.014 4, 0.016 4, 0.012
1667 60+, 0.786 48, 0.706 24, 0.490 12, 0.258 8, 0.091 6, 0.058 5, 0.035 5, 0.026 5, 0.024
6403 60+, 0.947 60+, 0.862 43, 0.682 21, 0.427 12, 0.223 8, 0.091 6, 0.051 6, 0.052 6, 0.062

Smooth number=10
131 24, 0.485 20, 0.447 18, 0.407 17, 0.371 17, 0.381 16, 0.337 18, 0.371 16, 0.362 17, 0.384
451 37, 0.634 26, 0.528 15, 0.330 8, 0.131 6, 0.050 6, 0.017 4, 0.010 3, 0.004 3, 0.003
1667 60+, 0.785 43, 0.680 20, 0.442 12, 0.213 8, 0.080 6, 0.030 4, 0.004 4, 0.002 4, 0.008
6403 60+, 0.943 60+, 0.861 38, 0.653 20, 0.410 10, 0.177 8, 0.090 5, 0.028 5, 0.015 5, 0.023

Bold characters indicate iteration counts and the number of DOF in the linear system.

Table II. Single Island Case: MG+HCT+sGS+smooth number 1-5-10.

N\m 100 101 102 104 105 106 107 108 109

Smooth number=1
131 60+, 0.885 60+, 0.898 60+, 0.932 ∞, 0.988 ∞, 0.997 ∞, 1.075 ∞, 1.089 ∞, 1.065 ∞, 1.137
451 ∞, 0.963 ∞, 0.987 ∞ 1.014 ∞, 1.050 ∞, 1.086 ∞, 1.106 ∞, 1.172 ∞, 1.081 ∞, 1.091
1667 ∞, 0.985 ∞, 1.015 ∞, 1.044 ∞, 1.062 ∞, 1.122 ∞, 1.109 ∞, 1.142 ∞, 1.170 ∞, 1.124
6403 ∞, 1.025 ∞, 1.040 ∞, 1.057 ∞, 1.125 ∞, 1.145 ∞, 1.130 ∞, 1.171 ∞, 1.112 ∞, 1.187

Smooth number=5
131 60+, 0.885 60+, 0.898 60+, 0.932 ∞, 0.988 ∞, 0.997 ∞, 1.075 ∞, 1.089 ∞, 1.065 ∞, 1.137
451 60+, 0.761 60+, 0.829 60+, 0.920 ∞, 1.070 ∞, 1.084 ∞, 1.120 ∞, 1.174 ∞, 1.118 ∞, 1.166
1667 60+, 0.854 60+, 0.923 ∞, 0.999 ∞, 1.038 ∞, 1.0037 ∞, 1.0085 ∞, 1.134 ∞, 1.154 ∞, 1.208
6403 60+, 0.931 ∞, 0.979 ∞, 0.998 ∞,1.012 ∞, 1.023 ∞, 1.058 ∞, 1.041 ∞, 1.063 ∞, 1.099

Smooth number=10
131 60+, 0.885 60+, 0.898 60+, 0.932 ∞, 0.988 ∞, 0.997 ∞, 1.075 ∞, 1.089 ∞, 1.065 ∞, 1.137
451 48, 0.660 53, 0.701 60+, 0.825 ∞, 0.955 ∞, 1.032 ∞, 1.115 ∞, 1.179 ∞, 1.200 ∞, 1.196
1667 40, 0.624 49, 0.680 60+, 0.797 ∞, 1.001 ∞, 1.088 ∞, 1.035 ∞, 1.064 ∞, 1.052 ∞, 1.095
6403 60+, 0.890 60+, 0.929 ∞, 0.972 ∞, 1.049 ∞, 1.017 ∞, 1.052 ∞, 1.051 ∞, 1.134 ∞, 1.170

Bold characters indicate iteration counts and the number of DOF in the linear system.

Table III. L-shaped Island Case: AGKS+HCT+sGS+smooth number 1-5-10.

N\m 100 101 102 103 104 105 107 109 1010

Smooth number=1
131 23, 0.515 20, 0.4878 15, 0.378 12, 0.310 10, 0.247 9, 0.148 9, 0.168 ∞, 1.055 ∞, 1.132
451 60+, 0.801 49, 0.745 35, 0.657 25, 0.544 21, 0.491 21, 0.421 22, 0.529 25, 0.570 25, 0.573
1667 ∞, 0.961 60+,0.893 60+, 0.818 50, 0.735 47, 0.730 49, 0.742 37, 0.727 40, 0.830 47, 0.819

Smooth number=5
131 23, 0.515 20, 0.4878 15, 0.378 12, 0.310 10, 0.247 9, 0.148 9, 0.168 ∞, 1.055 ∞, 1.132
451 54, 0.770 44, 0.709 27, 0.579 17, 0.443 13, 0.321 11, 0.254 9, 0.112 9, 0.149 9, 0.233
1667 ∞, 0.964 60+, 0.893 44, 0.730 25, 0.559 18, 0.406 14, 0.367 11, 0.289 10, 0.292 19, 0.379

Smooth number=10
131 23, 0.515 20, 0.4878 15, 0.378 12, 0.310 10, 0.247 9, 0.148 9, 0.168 ∞, 1.055 ∞, 1.132
451 54, 0.771 44, 0.709 27, 0.571 18, 0.441 14, 0.313 11, 0.244 9, 0.157 9, 0.147 9, 0.268
1667 ∞, 0.964 60+, 0.893 44, 0.708 25, 0.564 17, 0.400 13, 0.280 11, 0.250 10,0.278 18, 0.412

Bold characters indicate iteration counts and the number of DOF in the linear system.
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Table IV. L-shaped Island Case: MG+HCT+sGS+smooth number 1-5-10.

N\m 100 101 102 104 105 106 107 108 109

Smooth number=1
131 60+, 0.885 60+, 0.917 ∞, 1.004 ∞, 1.109 ∞, 1.093 ∞, 1.099 ∞, 1.141 ∞, 1.149 ∞, 1.032
451 ∞, 0.968 ∞, 1.004 ∞ 1.041 ∞, 1.097 ∞, 1.098 ∞, 1.111 ∞, 1.095 ∞, 1.136 ∞, 1.179
1667 ∞, 0.992 ∞, 1.029 ∞, 1.055 ∞, 1.078 ∞, 1.135 ∞, 1.107 ∞, 1.143 ∞, 1.134 ∞, 1.179

Smooth number=5
131 60+, 0.885 60+, 0.917 ∞, 1.004 ∞, 1.109 ∞, 1.093 ∞, 1.099 ∞, 1.141 ∞, 1.149 ∞, 1.032
451 60+, 0.761 60+, 0.868 60+, 0.970 ∞, 1.098 ∞, 1.137 ∞, 1.119 ∞, 1.128 ∞, 1.169 ∞, 1.195
1667 60+, 0.855 ∞, 0.952 ∞, 1.029 ∞, 1.039 ∞, 1.079 ∞, 1.120 ∞, 1.182 ∞, 1.183 ∞, 1.191

Smooth number=10
131 60+, 0.885 60+, 0.917 ∞, 1.004 ∞, 1.109 ∞, 1.093 ∞, 1.099 ∞, 1.141 ∞, 1.149 ∞, 1.032
451 41, 0.671 60+, 0.775 60+, 0.900 ∞, 1.060 ∞, 1.141 ∞, 1.141 ∞, 1.144 ∞, 1.178 ∞, 1.194
1667 38, 0.648 60+, 0.767 60+, 0.913 ∞, 1.055 ∞, 1.030 ∞, 1.098 ∞, 1.117 ∞, 1.171 ∞, 1.218

Bold characters indicate iteration counts and the number of DOF in the linear system.

Table V. Two-islands case: AGKS+HCT+sGS+smooth number 1-5-10.

N\m 100 101 102 103 104 105 107 109 1010

Smooth number=1
131 21, 0.495 18, 0.455 12, 0.266 8, 0.144 6, 0.046 4, 0.016 3, 0.009 3, 0.002 3, 0.001
451 49, 0.754 36, 0.674 19, 0.478 11, 0.261 8, 0.165 8, 0.166 9, 0.209 8, 0.160 8, 0.162
1667 60+, 0.890 60+,0.841 36, 0.680 18, 0.459 13, 0.315 13, 0.336 13, 0.315 13, 0.314 13, 0.316

Smooth number=5
131 21, 0.495 18, 0.455 12, 0.266 8, 0.144 6, 0.046 4, 0.016 3, 0.009 3, 0.002 3, 0.001
451 42, 0.717 32, 0.625 17, 0.436 10, 0.215 6, 0.074 5, 0.057 4, 0.004 4, 0.001 3, 0.003
1667 60+, 0.867 54, 0.772 26, 0.577 14, 0.311 8, 0.133 6, 0.050 4, 0.018 4, 0.010 4, 0.011

Smooth number=10
131 21, 0.495 18, 0.455 12, 0.266 8, 0.144 6, 0.046 4, 0.016 3, 0.009 3, 0.002 3, 0.001
451 42, 0.717 32, 0.625 17, 0.436 10, 0.215 6, 0.074 5, 0.057 4, 0.004 4, 0.001 3, 0.003
1667 60+, 0.866 54, 0.769 26, 0.576 14, 0.311 8, 0.133 6, 0.041 4, 0.007 4, 0.004 4, 0.006

Bold characters indicate iteration counts and the number of DOF in the linear system.

Owing to Shermann–Woodbury–Morrison formula, the inversion of S∞ and S(m) requires the
inversions of 3×3 and nH×nH matrices.‡ Therefore, the LRP clearly yields a computational
advantage. By exploiting the fact that S∞ in (1) is only an LRP of KLL, we can build robust
preconditioners for S∞ in (32) via standard multigrid preconditioners. Equation (1) implies that

S∞ =KLL−v�−1vT,

where v :=KLHeH. MHH and MLL denote the standard multigrid V (s,s)-cycles for KHH and
KLL, respectively. We can construct an efficient and robust preconditioner S̃−1 for S∞ using the
Sherman–Morrison–Woodbury formula, i.e.

S̃−1 :=MLL+MLLv(�−vTMLLv)−1vTMLL. (42)

‡Let T∞ :=�−vtK−1
LL v and T (m) :=KHH−K t

LHK
−1
LL KLH. The inversions yield the following operations respectively:

S−1
∞ = K−1

LL +K−1
LL vT−1

∞ vtK−1
LL ,

S(m)−1 = K−1
LL +K−1

LL KLHT (m)−1K t
LHK

−1
LL .

T∞ is of size 3×3 (in the case of a single island), independent of nH and m, whereas T (m) is of size nH×nH,
dense, and depends on m.
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Note also that we can precompute and store MLLv during the setup phase. This means that we
only need to apply the multigrid V (s,s)-cycle MLL once per iteration. Therefore, the following
practical version of preconditioner (32) is used in the implementation:

B̃AGKS :=
⎡
⎣ IHH −K∞†

HH KHL

0 ILL

⎤
⎦

[
MHH 0

0 S̃−1

][
IHH 0

−KLHK
∞
HH ILL

]
. (43)

We construct two different multilevel hierarchies for multigrid preconditioners MHH in (43)
and MLL in (42) for DOF corresponding to �H and �L, respectively. For prolongation, linear
interpolation is used as in [5]. The prolongation matrices PHH and PLL are extracted from the
prolongation matrix for whole domain � in the following fashion (11):

P=
[
PHH PHL

PLH PLL

]
.

As emphasized in our preceding paper [1], AGKS can be used purely as an algebraic precon-
ditioner. Therefore, the standard multigrid preconditioner constraint that the coarsest-level mesh
resolves the boundary of the island is automatically eliminated. However, for a fair comparison,
we enforce the coarsest-level mesh to have that property.

We do not observe convergence improvement when a subdomain deflation strategy based on
the smallest eigenvalues is used as in the diffusion equation case [2]. The eigenvectors of the
Neumann matrix, eH in (16), cannot approximate the eigenvectors corresponding to the smallest
eigenvalues of KHH which are of O(1) (see Figure 2) since the remainder matrix R in (15) is of
O(104). Therefore, a deflation strategy utilizing eH will not necessarily guarantee deflation of the
smallest eigenvalues of KHH in the biharmonic case.

We have studied three experiment cases: a square island, an L-shaped island, and two islands (two
triangle islands with different coefficient values). With these experiments, we obtain the following
results regarding the effect of the number of smoothing iterations on convergence behavior. We
do not show the results of MG performance for the two-island case. This is because there is a
contrast between the coefficients, and MG fails to converge for any m. For the other two cases, the
convergence of MG heavily depends on m and the number of smoothing iterations, i.e. for small m,
the more the smoothing iteration, the faster the convergence; see Tables II and IV. However, if the
coefficient m is bigger than 101, the MG method fails to converge independent of the smoothing
number.

Throughout the AGKS experiments, we observe different behaviors of convergence. First of all,
for the single square island case, AGKS requires more than one smoothing iteration for convergence;
see Table I. The choice of five smoothing iterations is sufficient for AGKS to reach h-robustness
and its peak performance for m>105. For the L-shaped island case, m-robustness is obtained for
smoothing number 1. When the smoothing number is increased to 10, h- and m-robustness are
obtained simultaneously; see Table III.

To test the performance of the AGKS preconditioner for the third case, i.e. the case of two
islands with different coefficients, we fix the coefficient of one of the islands to 109, and devise
a coefficient parameter for the second island. We observe that AGKS preconditioner enjoys m
robustness even when the smoothing number is one. Moreover, when we set the smoothing number
to 5 we obtain that the AGKS preconditioner converges in a few iterations for large m and is h
robust. In fact, as it can be seen from Table V, for the same problem size, the AGKS preconditioner
demonstrates the best performance for the two-island case.

Hence, when the smoothing number is set to be greater than 10, we can conclude that the
AGKS preconditioner clearly enjoys h-robustness for sufficiently large m values independently of
the shape or the number of the islands. In contrast, MG is not h-robust regardless of the m value
and the smoothing number. MG is totally ineffective as the problem size increases.

Finally, we report the m-robustness results. The loss of m-robustness of MG can be observed
consistently for allm values while the AGKS preconditioner becomesmore effective with increasing
m and reaches its peak performance by maintaining an optimal iteration count for all m�105. This
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Figure 4. (Left) Flop counts for the enforcement of variational conditions. (Right) Flop
counts for a single iteration of the preconditioners.

indicates that m�105 corresponds to the asymptotic regime. Even increasing the m value from 102

to 103 reduces the iteration count significantly, a clear sign of close proximity to the asymptotic
regime. In addition, the AGKS outperforms MG even for m=1. Consequently, we infer that AGKS
is m-robust.

We conclude the numerical experiments by reporting the cost of each preconditioner. For
variational conditions, the decoupling of KHH(m) and S∞ in (32) causes the AGKS preconditioner
to be cheaper than MG, see the flop counts in Figure 4. When the size of the highly bending region
grows, the enforcement of the variational conditions of the AGKS preconditioner becomes even
less costly than that of the MG preconditioner.

Finally, we report the cost per iteration for the AGKS and MG V (1,1)-cycle preconditioners. The
AGKS preconditioner in (32) requires inversions of two blocks: KHH(m) and S∞ corresponding
to highly and lowly bending regions, respectively. Therefore, for each iteration of AGKS precon-
ditioner, we utilize a full MG method for each block separately. This is exactly the setup that
MG methods are known to be highly effective because each block corresponds to a discretization
of the Laplace equation with homogeneous coefficients. Therefore, one iteration of the AGKS
preconditioner is roughly 20 times more costly than that of the MG preconditioner; see the flop
counts in Figure 4. This additional cost is worthy because after the smoothing number is set to
be 5, the AGKS preconditioner results in convergence in a few iterations for large values of m,
whereas, no matter what the smoothing number is, the MG preconditioner results in a consistent
failure.

7. GENERALIZATION TO ELLIPTIC PDES OF ORDER 2k

In essence, the biharmonic plate equation preconditioner is an extension of the construction for
the diffusion equation. It is possible to generalize this construction to a family of elliptic PDEs
of order 2k,k>2. We present how to obtain LRPs from associated bilinear forms. We choose a
different perspective than the one in Section 3. We start with a canonical bilinear form and show
the modification it needs to go through in order to construct LRPs.

Let the generalized problem be stated as follows: Find u∈Hk
0 (�) such that

Tku := (−1)k∇k(�k∇ku)= f in �. (44)
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The straightforward bilinear form associated with (44) is obtained by the application of Green’s
formula k times: ∫

�
∇k(�k∇ku)v dx=

∫
�

�k∇ku∇kv dx+boundary terms. (45)

Then, we define a bilinear form corresponding to (44) which can be seen as a generalization of
the canonical bilinear form in (7):

ãk(u,v) :=
∫
�

�k∇ku∇kv dx . (46)

Without modification, ãk(·, ·) cannot lead to LRPs because ãk(v,v) is not Hk
0 (�)-coercive. This is

due to the fact that ãk(v,v)=0 for v∈Pk−1∩Hk
0 (�). Hence, the stiffness matrix induced by (46)

has a large kernel involving elements fromPh
k−1∩V h which indicates that extraction of a Neumann

matrix with a low-dimensional kernel is impossible. In order to overcome this complication, we
utilize a modified bilinear form:

ak(u,v)= ãk(u,v)+(1−�k)âk(u,v).

The bilinear form should maintain the following essential properties:

1. Hk
0 (�)-coercive.

2. VPk−1(�)-coercive.
3. Corresponds to a strong formulation giving Tku in (44) precisely,

where VPk−1(�) is a closed subspace such that VPk−1 (�)∩Pk−1=∅ and Pk−1 denotes the set of
polynomials of degree at most k−1.

The above properties (1) and (2) will be immediately satisfied if the generalization of (13) holds
for the modified bilinear form:

ak(v,v)�ck |v|2Hk (�). (47)

A similar construction of the Neumann matrix can be immediately generalized as follows:

〈N(k)
HH�h ,�h〉 :=ak(�

h
H,�h

H).

The LRPs arise from the following decomposition of K (k)
HH(m):

K (k)
HH(m)=mN

(k)
HH+R(k), (K (k)

HH(m))−1=e(k)H �(k)
−1
e(k)

t

H +O(m−1),

where �(k) :=e(k)
t

H K (k)
HHe

(k)
H . LRP is produced by e(k)H ∈Ph

k−1 because the rank is equal to the cardi-
nality of the basis polynomials in Ph

k−1.

kerN(k)
HH=Ph

k−1|�H
.

Owing to (8), a2(·, ·) in (5) corresponds to the strong formulation of T2 exactly. Let us denote
the strong formulation to which ak(·, ·) corresponds by T̂k . We have T̂k =Tk , k=1,2, for the
high-contrast diffusion and biharmonic plate equations, respectively:

a1(v,v) := (∇v,�1∇v),

a2(v,v) := �2(∇2v,�2∇2v)+�2(1−�2)|v|2H2(�).

Copyright � 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
DOI: 10.1002/nla



ROBUST MULTIGRID PRECONDITIONERS FOR BIHARMONIC PLATE EQUATION

However, for general k, ak(·, ·) may not correspond to Tk . In addition, one may need more general
boundary conditions if similar zero contributions in (8) can be obtained for general k. Further
research is needed to see if such boundary conditions are physical. Currently, it is also unclear for
which applications such general PDEs can be used. However, there are interesting invariance theory
implications when one employs bilinear forms corresponding to rotationally invariant functions
compatible to energy definition in (4). This allows a generalization of the energy notion and may
be the subject for future research. For further information, we list the relevant bilinear forms that
are composed of rotationally invariant functions derived by the utilization of invariance theory.

a3(v,v) := �3(∇3v,�3∇3v)+�3(1−�3)|v|2H3 (�),

a4(v,v) := �4(∇4v,�4∇4v)+�4(1−�4)|v|2H4 (�)+�4�4|∇2v|2H2(�).

Note that the above bilinear forms satisfy (47).
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